Galaktische Quellen und Karussells

Wie in unserem Universum Ordnung aus Chaos entstand

7. November 2019

Wissenschaftler aus Deutschland und den Vereinigten Staaten haben die Ergebnisse einer neuen, besonders umfangreichen Simulation der Evolution von Galaxien vorgestellt. TNG50 ist die bisher detailreichste kosmologische Großsimulation. Sie ermöglicht es Forscher*innen, im Detail zu untersuchen, wie sich Galaxien bilden und wie sie sich von der Zeit kurz nach dem Urknall bis heute entwickelt haben. Die Simulation zeigt zum ersten Mal, dass die Geometrie der kosmischen Gasflüsse in und um Galaxien die Struktur der Galaxien beeinflusst und sich die Eigenschaften jener Gasflüsse umgekehrt wiederum aus der Evolution der Galaxien ergeben. 

Astronomen, die kosmologische Simulationen durchführen, müssen sich üblicherweise entscheiden: Aufgrund von Grenzen der verfügbaren Rechenleistung konnten typische Simulationen bisher entweder sehr detailgetreu simulieren oder ein großes Volumen an virtuellem Raum umfassen, aber nicht beides. Detaillierte Simulationen mit stark begrenztem Volumen können nicht mehr als ein paar Galaxien modellieren, was statistische Rückschlüsse erschwert. Großräumigen Simulationen wiederum fehlen typischerweise die notwendigen Details, um wichtige Eigenschaften auf kleineren Skalen zu erklären, die wir in unserem eigenen Universum beobachten – was ihre Vorhersagekraft deutlich reduziert. Der gerade veröffentlichten TNG50-Simulation gelingt es erstmals, eine großräumige kosmologische Simulation mit der Detail-Auflösung von "hineingezoomten"-Simulationen zu verbinden, wie sie bislang nur für Untersuchungen einzelner Galaxien möglich waren. 

In einem simulierten würfelförmigen Ausschnitt des Weltalls mit Seitenlängen von 230 Millionen Lichtjahren kann TNG50 physikalische Phänomene darstellen, die auf einer Million mal kleineren Skalen auftreten und so die gleichzeitige Entwicklung Tausender von Galaxien über 13,8 Milliarden Jahre kosmischer Geschichte hinweg verfolgen. Die Bausteine der Simulation sind dabei 20 Milliarden „Teilchen“, die dunkle Materie, Sterne, kosmisches Gas, Magnetfelder und supermassereiche Schwarze Löcher darstellen. Die Berechnung selbst erforderte 16.000 Computerkerne (cores) auf dem Supercomputer Hazel Hen in Stuttgart, die mehr als ein Jahr lang rund um die Uhr am Rechnen waren – das entspricht fünfzehntausend Jahren Rechenzeit auf einem einzigen Prozessor. TNG50 ist damit eine der anspruchsvollsten astrophysikalischen Simulationen überhaupt.

Emergente Phänomene in einem simulierten Universum

Zu den ersten wissenschaftlichen Ergebnissen von TNG50, die jetzt in zwei Fachartikeln in den Monthly Notices der Royal Astronomical Society von einem Team unter der Leitung von Dr. Annalisa Pillepich (Max-Planck-Institut für Astronomie, Heidelberg) und Dr. Dylan Nelson (Max-Planck-Institut für Astrophysik, Garching) veröffentlicht wurden, zählen auch einige durchaus unerwartete Phänomene. Dylan Nelson sagt: "Numerische Experimente dieser Art sind besonders erfolgreich, wenn mehr herauskommt, als man hineingesteckt hat. In unserer Simulation sehen wir Phänomene, die wir nicht explizit vorprogrammiert hatten. Diese Phänomene ergeben sich auf natürliche Weise aus dem Zusammenspiel der grundlegenden physikalischen Bestandteile unseres Modelluniversums."

 

TNG50 liefert zwei eindrückliche Beispiele für diese Art von “emergentem” Verhalten. Im ersten Beispiel geht es um die Entstehung von Scheibengalaxien wie unserer eigenen Milchstraße. Mit TNG50 als Zeitmaschine konnten die Forscher die kosmische Geschichte zurückspulen und sich dann systematisch ansehen, wie die schnell rotierenden Scheibengalaxien mit ihren geordneten Sternbewegungen (die in unserer kosmischen Umgebung recht häufig sind) aus den chaotischen, ungeordneten und hoch turbulenten Gaswolken früherer Epochen hervorgehen.  Nach und nach kommt das Gas dabei zur Ruhe und Sterne, die aus diesem Gas entstehen, finden sich damit immer häufiger auf Kreisbahnen und bilden schließlich eine große Spiralgalaxie als eine Art galaktisches Karussell. 

Annalisa Pillepich sagt: "TNG50 zeigt, dass sich unsere eigene Milchstraßengalaxie mit ihrer dünnen Scheibe voll im Trend befindet: In den letzten 10 Milliarden Jahren sind zumindest diejenigen Galaxien, in denen noch neue Sterne entstehen, immer scheibenartiger geworden, und ihre chaotischen inneren Bewegungsmuster haben sich deutlich abgeschwächt. Das Universum war viel chaotischer als heute, als es nur ein paar Milliarden Jahre alt war!"

Wechselspiel von Gas und Galaxien

Und noch ein weiteres emergentes Phänomen haben die Astronom*innen bei der simulierten Evolution ihrer Galaxien ausgemacht: Gas und Teilchenwinde, die mit hoher Geschwindigkeit aus den Galaxien ausströmen. Hervorgerufen wird dieses Phänomen durch Supernova-Explosionen und durch die Aktivität der supermassereichen Schwarzen Löcher in den Zentren von Galaxien. Das Gas verlässt die Galaxie dabei zunächst in beliebige Richtungen – eine durchaus chaotische Situation. Aber mit der Zeit, und das wurde nicht von vornherein einprogrammiert, spielen sich die Gasströmungen auf einen Weg des geringsten Widerstands ein. Im späten Universum strömt das Gas dann typischerweise in zwei entgegengesetzte Richtungen innerhalb von kegelförmigen Regionen aus, die wie zwei Eistüten aussehen, Spitze an Spitze positioniert, mit der Galaxie in der Mitte. Solche Strukturen findet man auch in den astronomischen Beobachtungsdaten.

Unter dem Schwerkraft-Einfluss des Halos an Dunkler Materie, in dem sich die Galaxie befindet, werden diese Winde dann immer langsamer. Wie das Wasser einer Fontäne können sie auf die Ursprungsgalaxie zurückfallen und sie mit recyceltem Gas versorgen. Dieser Prozess sorgt außerdem für eine Umverteilung des Gases vom Zentrum einer Galaxie in ihre Außenbezirke, und beschleunigt damit die Umwandlung der Galaxie in eine dünne Scheibe: galaktische Strukturen bringen galaktische Fontänen hervor und umgekehrt.

Ebenso wie die anderen Simulationen der TNG-Familie werden die Wissenschaftler des TNG50-Teams (die an Max-Planck-Instituten in Heidelberg und Garching, an der Harvard-Universität, am MIT und am CCA arbeiten) ihre Simulationsdaten beizeiten im Ganzen veröffentlichen. Dann können Astronomen weltweit ihre eigenen Entdeckungen im TNG50-Universum machen – und womöglich noch weitere Beispiel für emergente kosmische Phänomene finden, bei denen auf kosmischen Größenskalen Ordnung aus dem Chaos des frühen Universums hervorgeht.

Filme
Entstehung und Entwicklung einer massereichen Galaxie in der TNG50-Simulation. Hauptbild: kosmische Gasdichte auf mittleren Größenskalen. Kleinere Bilder, von links nach rechts: Dichte der Dunklen Materie auf großen Skalen, Gasdichte auf großen Skalen, Zoom-Bilder der Sternverteilung (Helligkeit) und Gasdichte im Zentralbereich der Galaxie. Die Galaxie ähnelt am Ende der hier gezeigten Entwicklung in punkto Masse und Form der Andromeda-Galaxie (M31). Nach einem stürmischen Anfang verläuft die Galaxienentwicklung weitgehend ruhig, so dass die Galaxie einen Gleichgewichtszustand erreichen kann.

D. Nelson (MPA) und das Illustris-TNG-Team mehr

Hintergrundinformationen

Die ersten wissenschaftlichen Ergebnisse der TNG50-Simulation wurden veröffentlicht in den Artikeln von D. Nelson et al. 2019, "First Results from the TNG50 Simulation: Galactic outflows driven by supernovae and black hole feedback" und A. Pillepich et al. 2019, "First Results from the TNG50 Simulation: The evolution of stellar and gaseous disks across cosmic time," die beide in der Fachzeitschrift Monthly Notices of the Royal Astronomical Society erscheinen. Beide sind bereits als "Akzeptierte Manuskripte" online und werden nun im aktuellen Band der MNRAS veröffentlicht.

Die beteiligten MPIA-Forscher sind Annalisa Pillepich und Arjen van der Wel (jetzt Universität Gent) in Zusammenarbeit mit Dylan Nelson, Volker Springel und Rüdiger Pakmor (alle Max-Planck-Institut für Astrophysik), Paul Torrey (University of Florida), Rainer Weinberger (Harvard-Smithsonian Center for Astrophysics), Mark Vogelsberger und Federico Marinacci (beide Kavli Institute for Astrophysics and Space Research, MIT), Shy Genel (Flatiron Institute) und Lars Hernquist (Harvard-Smithsonian Center for Astrophysics).

Weitere Abbildungen und Downloadbereich

Abbildung 1

Abbildung 2

Video

https://www.tng-project.org

Zur Redakteursansicht