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ORBIT-BASED MODELS
• Orbit-based models do not place any 

assumptions on the anisotropy (orbit 
configuration) and can use all kinematic 
information, including higher moments

• Still imposes some assumptions: equilibrium, 
geometry 

• Contain many parts and numerical integrals, 
but are all well understood.

• Several implementations exist: Spherical 
(Magorrian, Breddels), axisymmetric (NUKERS, 
van der Marel, Valluri), Triaxial (van den Bosch) 

• When are Schwarzschild models appropriate?
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The black hole in NGC 3379 565

Figure 5. MGE fit to the data along three PAs (left-hand panels), with
percentage error (right-hand panels). All individual Gaussian components
are shown, as well their sum, which fits the surface brightness data (boxes)
over four orders of magnitude in radius. This model was generated from
combined HST/WFPC2 data and ground-based wide-field MDM imaging
and was presented in Cappellari et al. (2006). The strong ‘core’ signature
can be seen inwards of ∼2 arcsec.

The resulting Hα + [N II] image reveals a well-defined disc of
emission around the galaxy centre. The regularity of this disc allows
for a simple and precise measurement of its photometric PA and
inclination. We fit an ellipse by eye to the outline of the disc in this
image and measured the PA to be 118◦. If the disc is assumed to be
thin and intrinsically circular, then the inclination implied by this fit
is i disc = 70◦ ± 8◦, where the error bar includes the inclination of
the dust disc associated with the gas and an ellipse fit to the OASIS
gas data.

Cappellari et al. (2006) have used the F814W WFPC2 image of
NGC 3379, in addition to wide-field ground-based photometry taken
in the same filter at the 1.3-m McGraw-Hill telescope at the MDM
observatory on Kitt Peak, to construct a multi-Gaussian expansion
(MGE) parametrization of the surface brightness of this galaxy
(Emsellem et al. 1994; Cappellari 2002). Their deconvolved MGE
model was regularized to require that the axial ratio of the flattest
Gaussian be as large as possible and was corrected for extinction.
The resulting best-fitting MGE, a sum of 13 Gaussian components,
is presented in their fig. 3, and the calibrated parameters, corrected
for extinction and converted to a stellar surface density in solar units,
are given in their table B1. In Fig. 5, we show the MGE fit to the sur-
face brightness along several PAs, as well as the residuals of this fit.
We adopt this parametrization to describe the stellar surface density
distribution in this galaxy.

3.2 STIS spectroscopy

Long-slit spectra of the central gas disc in NGC 3379 were ob-
tained with the HST Space Telescope Imaging Spectrograph (STIS),
through a 0.2-arcsec slit and through the G750M filter with the grat-
ing tilted to provide a spectral range 6300–6860 Å. With this set-up,
these data included the Hα and both [N II] emission lines in this

Table 2. Specifications of the HST/STIS observations.

Number of exposures Average texp (s) Nominal shift Actual shift

Top slit 5 2600 + 0.25 arcsec + 0.25 arcsec
Centre slit 5 2700 0.00 arcsec 0.00 arcsec
Bottom slit 4 2550 − 0.25 arcsec − 0.20 arcsec

galaxy, at a spectral resolution of 0.554 Å pixel−1 and a spatial sam-
pling of 0.051 arcsec pixel−1.

Target acquisition and peak-up procedures were performed to
centre the STIS slit on the nucleus of the galaxy. Spectroscopic
images were then obtained at each of three locations: at the galaxy
centre and with a nominal offset ±0.25 arcsec perpendicular to the
slit, with a resulting gap of 0.05 arcsec between slits. Due to the
scheduling of the observations, there was no observability at the
requested PA along the major axis of the gas disc; consequently,
the observations were taken at a PA = −104.◦7, approximately 40◦

offset from the major axis. This slit positioning and location is shown
in Fig. 4, and we designate the ‘top’, ‘centre’ and ‘bottom’ slits
according to their location in this figure.

Data were acquired in five exposures on the top and centre slits
and four on the bottom slit. Observation details are presented in
Table 2. Individual exposures were spatially dithered along the slit
in order to avoid systematic effects. The images were processed
by the HST data processing pipeline, including wavelength calibra-
tion, after which they were combined and cosmic ray rejected. The
resulting STIS data for all three slits is shown in Fig. 6.

We use the STIS data themselves to measure the actual positions
of the slits by collapsing the spectra over the spectral range and
comparing that light profile to light profiles extracted from the ac-
quisition image taken during the peak-up procedure. These latter
profiles were extracted from the acquisition image by averaging the
flux of pixels (and fractions of pixels) covered by synthetic 0.2-
arcsec STIS slits. The best-fitting slit positions were determined
using a χ 2 minimization of the ratio between the light profile mea-
sured from the slits and that measured from the acquisition image.
For the top and centre slit, the nominal offset is indeed the actual
offset, to within a fraction of a STIS pixel. For the bottom slit, the
actual offset is −0.20 arcsec, which deviates from the nominal off-
set of this slit by ∼1 STIS pixel. These results are summarized in
Table 2.

3.3 Gas kinematics

The gas kinematics in NGC 3379 were extracted for each individual
row of all three STIS slits. As would be expected from the WFPC2
Hα + [N II] image, the emission signal drops off dramatically at the
boundaries of the gas disc; therefore, all rows with detectable signal
were used. This results in gas kinematics being obtained for roughly
the inner 2 arcsec of the galaxy.

To measure the kinematics, we first removed the stellar back-
ground emission by fitting a linear continuum to 6475–6525 and
6625–6675 Å. Over this spectral range, a straight line is a good ap-
proximation to the continuum shape. The Hα and the [N II] λ6584
lines were then fit separately by single Gaussians. The [N II] λ6548
emission was not used, as it has low signal in all rows and is not
detectable at larger radii (see Fig. 6). No other emission lines were
detected. The higher [N II] λ6584 signal than Hα and the lack of
other significant emission lines are consistent with the classification
of NGC 3379 as a LINER galaxy.

Fig. 7 shows the derived [N II] λ6584 and Hα kinematics, set to a
systemic velocity of zero. Over most of the disc, the two lines share
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ORBIT-BASED MODELS

(1)Choose a potential

(2)Integrate orbit in the 
potential and store all the 
observables, including 
kinematics

(3)Generate a library of 
orbits

(4)Construct a superposition
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FIG. 1.— CFHT WIRCam Ks-band image of NGC 3998 (Läesker et al.,
in prep). NGC 3998 is a nearby, S0 galaxy with simple morphology suitable
for stellar dynamical modeling. A HST WFPC2 791W image along with this
image were used to measure the galaxy’s stellar mass distribution. North is
up and east is to the left. The image is 400′′ on a side.

(16.6 kpc). The ground-based image was used to generate
the mass model on large spatial scales, which is helpful in
constraining the intrinsic shape of the galaxy in the stellar dy-
namical models. In Figure 1, we show the CFHT WIRCam
image of NGC 3998.

3. STELLAR MASS PROFILE
We parameterized the WFPC2 F791W and WIRCam Ks-

band images of NGC 3998 as the sum of 2D Gaussians us-
ing the Multi-Gaussian Expansion (MGE) method (Cappel-
lari 2002). MGE models were fit to both images simultane-
ously while also accounting for the HST PSF. The PSF itself
was described as the sum of 25 positive and negative Gaus-
sians, which were found by applying the MGE software to
a Tiny Tim model (Krist & Hook 2004). Our best-fit MGE
parametrization of the galaxy was composed of 12 Gaussians,
where the innermost Gaussian was constrained to be round
and the position angles (PA) of the Gaussian components were
required to be the same. This model produced an excellent
fit to the imaging data, as can be seen in Figure 2. The MGE
model was corrected for galactic extinction using the Schlegel
et al. (1998) values given by the NASA/IPAC Extragalactic
Database (NED) and the surface density was converted to
I-band solar units using the WFPC2 calibration by Dolphin
(2000). In Table 1, we provide the best-fit values of the MGE
parameters. We further note that there are no significant emis-
sion lines within the F791W bandpass (Ho et al. 1993).
Although our adopted MGE model requires each Gaussian

component to have the same PA, we fit an additional MGE
model that allowed for isophotal twists. We detected very
small changes to the PA, of typically < 1◦, between the com-
ponents. Furthermore, when using this MGE parameteriza-
tion as input into the orbit-based stellar dynamical models, we
found worse agreement between the observed and predicted
stellar kinematics. As a result, we do not consider the MGE
model that allows for isophotal twists any longer, and focus
solely on the MGE parametrization that constrains each com-
ponent to have the same PA.
When constructing mass models of galaxies containing an

active galactic nucleus (AGN), often the innermost Gaussian
of theMGEmodel is assumed to arise from non-thermal emis-
sion and is excluded from the stellar mass distribution. The
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FIG. 2.— Isophotes of the MGE model (black) are compared to the HST
WFPC2/PC F791W image (top) and the CFHT WIRCam Ks-band image
(bottom). Contours are logarithmically spaced, but arbitrary.

nucleus of NGC 3998 has been spectroscopically classified
as a Type 1.9 LINER (Ho et al. 1997), and an unresolved,
variable UV source, a compact radio source, and an X-ray
source have all been detected at the galaxy’s center (Hummel
et al. 1984; Fabbiano et al. 1994; Maoz et al. 2005; Roberts
& Warwick 2000; Pellegrini et al. 2000). All of this evidence
suggests that NGC 3998 hosts an AGN. However, the galaxy
also exhibits a very cuspy surface brightness profile, and some
starlight may still be contained within the innermost Gaus-
sian. We therefore ran orbit-based stellar dynamical mod-
els using MGE parameterizations that both included and ex-
cluded this central Gaussian, and will discuss the results in §8
and §8.1. These descriptions represent the two extremes; in
one case all the light from the innermost Gaussian is attributed
to the stars and in the other scenario all the light is assigned
to the AGN.

4. SPECTROSCOPIC OBSERVATIONS
We observed NGC 3998 using the IFU OH-Suppressing In-

frared Imaging Spectrograph (OSIRIS; Larkin et al. 2006)
assisted by the LGS AO system (Wizinowich et al. 2006;
van Dam et al. 2006) on the 10-m Keck II telescope. The
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Richstone and collaborators (see, e.g., Richstone & Tre-
maine 1984, 1985 ; Levison & Richstone 1985, 1987 ; Katz &
Richstone 1985). Pfenniger (1984) used SchwarzschildÏs
method to build two-dimensional models of barred galaxies
and Merritt & Fridman (1996) and Merritt (1996a) used it
to build a number of triaxial models with cusps. Zhao
(1996b) modeled the Galactic bar using similar techniques.
SchwarzschildÏs original experiment reproduced self-
consistently a triaxial mass distribution, but as shown by
Pfenniger (1984), one can easily include kinematic con-
straints in the models. Levison & Richstone (1985) modeled
the observed mean line-of-sight velocities V and velocity
dispersions p to estimate the amount of counter-rotation in
some well-observed galaxies.

Recent advances in detector technology have made it
possible to measure full line-of-sight velocity proÐle (VP)
shapes, instead of only the Ðrst two moments V and p (e.g.,
Franx & Illingworth 1988 ; Rix & White 1992 ; van der
Marel & Franx 1993, hereafter vdMF; Kuijken & Merri-
Ðeld 1993). This provides further constraints on the dynami-
cal structure of galaxies. Rix et al. (1997, hereafter R97) took
advantage of this development and extended Schwarzs-
childÏs scheme to model VP shapes. They applied it to
spherical models for the E0 galaxy NGC 2434 and showed
that the observations imply the presence of a dark halo.
Here we consider axisymmetric models and show how to

use the extended Schwarzschild method to construct fully
general three-integral models that can match any set of
kinematic constraints. Independent implementations of the
software were written by N. C. and R. v. d. M. A summary
of this development is given by de Zeeuw (1997). In an
earlier paper (van der Marel et al. 1998, hereafter vdM98;
see also van der Marel et al. 1997b) we applied this model-
ing technique to the compact E3 elliptical M32, for which
previous modeling had suggested the presence of a central
massive black hole (BH) (e.g., Q95 ; Dehnen 1995). Cretton
& van den Bosch (1999) describe an application to the
edge-on S0 galaxy NGC 4342. Other groups are in the
process of developing similar techniques to the one
described here (e.g., Richstone et al. 1997 ; see also : Emsel-
lem, Dejonghe, & Bacon 1999 ; Matthias & Gerhard 1999).

This paper is organized as follows. In ° 2 we describe step
by step how to construct the models (see Fig. 1). We Ðrst
discuss the mass models that we consider (° 2.1). We
describe how we choose a grid in integral space that yields a
representative library of orbits (° 2.2), how these orbits are
calculated numerically (° 2.3), how their properties are
stored on a number of grids (° 2.4), and how we model all
aspects of the data taking and analysis, such as seeing con-
volution, pixel binning, and extraction of VPs (° 2.5). We
then present the method that we employ to determine the
non-negative weight of each orbit (i.e., the number of stars

FIG. 1.ÈFlowchart of the extended Schwarzschild method. We Ðnd the non-negative superposition of the orbits with a least squares algorithm (NNLS).
This combination of orbits reproduces a set of photometric (surface brightness distribution) and kinematic constraints (VPs).Cretton et al. 1998

Loop over all possible 
mass distributions:

SMBH, viewing angles, 
stellar mass-to-light ratio 
and dark matter 

Computationally easy
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THE SIZE OF AN ORBIT LIBRARY

• How do you know the orbit library 
is complete?

• Three conserved quantities: Integrals 
of motions (Energy, Angular 
momentum and I3)

• In (non-rotating) potentials all major 
orbits pass orthogonally through the 
x-z plane

• Sampling orbits is thus trivial

• Sampling schemes differ, but it is easy 
to show convergence is reached.

Triaxial orbit based models 653

Figure 2. The (x, z) plane of a triaxial galaxy with a separable potential, for
a value of the energy E that is large enough that all orbit families appear. The
figure shows the equipotential that corresponds to E, the focal hyperbola,
the curve at which I2 = 0, and the location of the thin orbits. The regions
where the different orbit families cross the (x, z) plane perpendicularly are
indicated: ‘B’ denotes box orbits, ‘S’ corresponds to short-axis tubes and
‘I’ and ‘O’ label inner and outer long-axis tubes. It can be seen that all
tube orbits cross the (x, z) plane perpendicularly in two points: once in the
region outside the thin orbit curve and once inside. This means that the (grey)
region between the thin orbit curves comprises all orbits just once, which is
important for the orbital sampling (Schwarzschild 1993).

which avoid the centre and are therefore sometimes referred to as
‘centrophobic’, and a set of orbits that can cross the centre, usually
referred to as boxes or ‘centrophilic’ orbits (e.g. Kuzmin 1973; de
Zeeuw 1985; Statler 1987). These different orbit families conserve
unique combinations of these integrals and can therefore be linked to
distinct volumes in phase space. May be even more remarkably, all
four orbit families in a separable potential cross the (x, z) plane per-
pendicularly in well-defined regions (Fig. 2; Schwarzschild 1993).
Similar to axisymmetry, all tubes except the so-called thin orbits (in
which the inner and outer radial turning points coincide) cross the
(x, z) plane perpendicularly twice. At a given energy, these points are
located in two distinct areas, separated by the line that connects the
points of the thin orbits. This line can be parametrized analytically
in a separable potential.

These properties are summarized in Fig. 2, where we have used
the isochrone separable potential of the triaxial Abel model. The
figure shows the (x, z) plane for a value of the energy that is large
enough that all orbit families are populated. The thick outermost
curve is the equipotential at this energy, the innermost and outermost
decreasing curves inside the equipotential connect the points where
the thin orbits cross the (x, z) plane perpendicularly, the intermediate
decreasing curve corresponds to I2 = 0, and the rising curve is the
focal hyperbola. The four areas corresponding to the different orbit
families are also indicated (see section 5.4 of vdV08 for further
details).

This orbital structure depends crucially on the presence of a cen-
tral core and is (partially) destroyed by the addition of a super-

massive black hole and/or a central cusp (Gerhard & Binney 1985).
Some orbits in these non-separable potentials do not conserve global
integrals of motion other than the energy E and may not all cross
the (x, z) plane perpendicularly. The three types of tube orbits, in-
cluding the thin tubes, are still supported (cf. Schwarzschild 1993).
Most box orbits are transformed into boxlets (Miralda-Escudé &
Schwarzschild 1989) and orbits that occupy certain parts of phase
space become chaotic. The amount of chaotic motion and the radial
range inside which it is present depends on the central cusp slope
(see Section 4.6).

4.3 Initial conditions

The orbits in our models are more complicated than those in a sep-
arable potential, as we use a more realistic MGE potential with a
supermassive black hole. Still, we use the properties of separable
models in our sampling of initial conditions. We sample the orbital
energy implicitly through a logarithmic grid in radius. When the
model has to reproduce observational data, it is important to sample
the orbital energy on a grid with a minimum radius that is at least an
order of magnitude smaller than the pixel size of the observations.
In the case of Hubble Space Telescope (HST) data, this typically
corresponds to ∼10−2 arcsec. The outer grid radius is determined
by our constraint that the grid must include !99.9 per cent of the
mass.

Each of the grid radii ri is linked to an energy by calculating
the potential at (x, y, z) = (ri , 0, 0). The orbital initial conditions
are then sampled from a dense grid in the (x, z) plane. Since most
orbits cross the (x, z) plane perpendicularly twice above z > 0 it is
not necessary to sample the whole plane. The double countings are
avoided by finding the location of the thin orbit curves iteratively:
we launch orbits at different radii [keeping θ = arctan(x/z) fixed]
until the width of the orbit is minimal. This is similar to what was
done in the axisymmetric three-integral models, where all orbits are
short-axis tubes.

The starting points (x, z) are selected from a linear open polar
grid (R, θ ) in between the thin orbit and the equipotential (the grey
area in Fig. 2). The initial velocity in the y direction is determined
from v2

y,0 = 2[V(x0, 0, z0) − Ei] and (vx , vz) = (0, 0). This three-
dimensional set (E, R, θ ) of starting conditions is commonly referred
to as the ‘(x, z) start space’ (Schwarzschild 1993). It is sufficient to
launch orbits in only one direction when the density (or another
quantity that is even in the velocity, such as the second moment)
has to be reproduced. When the velocity (and odd higher order
velocity moments of the DF) is fitted in the model, the direction
of the orbital motion is also important. This information could be
taken into account directly by launching orbits in both the positive
and negative y direction. However, the trajectories of the prograde
and retrograde orbits are identical, which means it is much more
efficient to include the counter-rotating orbits only at the fitting
stage by reversing the velocity sign appropriately. This is only valid
when figure rotation is ignored (cf. Schwarzschild 1982).

Since boxes are essential for the support of the triaxial shape
(Schwarzschild 1979; Hunter & de Zeeuw 1992), a library with
relatively few of them cannot be expected to reproduce a triaxial
mass model. The (x, z) start space has few box orbits, especially
at large radii (see Fig. 3). To make sure that the orbit library pro-
vides enough freedom in the outer parts of the model, we add ad-
ditional box orbits, like Schwarzschild (1993). Box orbits always
touch the equipotential (Schwarzschild 1979). We therefore sample
start points on (successive) equipotential curves, using linear steps
in the two spherical angles θ and φ. At each combination of (θ , φ)
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Figure 3. Representation of the (x, z) and the stationary start space and their symmetries for the triaxial Abel model from vdV08. The panels show the orbital
starting points for increasing energies (denoted at the top), from an inner shell of the model (top left-hand diagram) to an outer shell (bottom right-hand diagram).
The symbols represent the position of the orbits in the start spaces. The orbits in the inner right-hand quarter are in the (x, z) start space and the orbits placed in
the outer right-hand quarter are in the stationary start space (Section 4.3). The thick black line represents the equipotential (cf. Fig. 2). The orbits in the inner
left-hand quarter are the orbits from the (x, z) start space with reversed angular momentum and the orbits placed in the outer left-hand quarter is identical to the
outer right-hand quarter and are only drawn to make the panels symmetric. The symbols show the result of the orbit classification (based on angular momentum
conservation, Section 4.5): the crosses are box orbits, the stars correspond to short-axis tubes and the diamonds correspond to (both types of) long-axis tubes.
We have also overplotted the analytical curves that separate the different type of orbits (see also Fig. 2 and vdV08). The solid rising curve is the focal hyperbola,
with above it the long-axis tubes and below it the short-axis tubes and boxes. The crossing solid declining curve separates, respectively, between the inner and
outer long-axis tubes, and between the short-axis tubes and boxes. The thin curves indicate the location of the corresponding thin tube orbits.

and E, we use bisection to find the corresponding value of r0 that is
located on the equipotential. This three-dimensional set (E, θ , φ) of
start conditions, the ‘stationary start space’ (Schwarzschild 1993),
results in box orbits or boxlets only. Tube orbits always conserve
the sign of at least one component of the angular momentum and
therefore never reach zero velocity. Since the direction of the orbits
in this start space is not important it is not necessary to add velocity
mirrored copies of them during the fit.

By design the set of energies E and angles in θ in both start
spaces are identical, so that the orbits on the equipotential bound-
ary of the (x, z) start space have obvious neighbours in stationary
start space. While not necessary, the size of the third dimension
of the start spaces is chosen to be the same for consistency. Both
sets of orbits can be represented in a single figure, by graphically
connecting the corresponding starting spaces at the equipotential, as
shown in Fig. 3, where selected energies of the triaxial Abel model
(Section 4.1) are shown. In this figure we have overplotted the same
lines from Fig. 2, which shows that our numerical scheme to locate
the thin orbits indeed results in an orbit sampling from the correct
region. The stationary start space intersects with the xz start space
at the equipotential. In the figure all the orbits in the stationary start
space that are nearest to the equipotential are plotted just outside the
equipotential. Subsequent rows in the stationary start space are plot-
ted radially outwards. A mirror image of the stationary start space
is also plotted for symmetry.

4.4 Dithered orbit integration

The orbits in the start space are integrated numerically and their
properties stored. The integration is done in Cartesian coordinates,
using an explicit Runga–Kutta method of order 5(4) (DOPRI5 rou-
tine by Hairer, Norsett & Wanner 1993). With this method, the
majority of the orbits can be integrated with energy accuracies of

better than one part in 105. This routine is capable of dense output,
which enables you to get an interpolated position and velocity at
any time in current time-step during the integration.

To ensure numerical precision the Runga–Kutta integrator uses
more steps where the orbital trajectory changes direction quickly.
Since this usually happens when the ‘star’ is travelling with a
high velocity, the integrated time-steps do not represent the time-
averaged path of the orbit. To make sure this is not a problem we
use the dense output of the integrator, to sample the orbit on equal
time intervals, ensuring that the orbits are properly time weighted.

Single orbits correspond to delta-functions in integral space,
while the DF of a (partially) phase-mixed galaxy is expected to vary
smoothly (Tremaine, Henon & Lynden-Bell 1986). This limitation
may be reduced by combining nearby orbits (Richstone & Tremaine
1988; Rix et al. 1997). Here we extend this method by ‘dithering’
orbits in all three dimensions in the initial starting space. We do
this by taking a bundle of 53 orbits with different, but adjacent, ini-
tial conditions and sum their observables. This method is also used
in the construction of axisymmetric models (see Cappellari et al.
2006).

When calculating the starting spaces for the orbits we create more
starting points for the dithering. We enlarge the sampling three-
dimensional (E, θ , φ) start spaces five times in each direction. This
leads to 125 orbits per bundle. The odd number five was chosen
so that each bundle has a clearly defined central orbit (see fig. 6 in
Cappellari et al. 2006). The orbital properties of each of the orbits in
each bundle are simply co-added. As an alternative, it is be possible
to apply some form of (Gaussian) weighting. In this way the orbit
bundles could be made to overlap, but the effects of this have not
been studied.

Effectively, the model thus contains 125 times more orbits. The
dithering causes the orbital building blocks to be smoother, eliminat-
ing aliasing effects, especially when modelling spatially extended

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 385, 647–666
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of Ui in phase space. The volume of the phase-space region repre-

sented by orbit i then follows as

Vi =
∫

χi d3r d3v, (21)

and accordingly the phase-space density along the orbit reads

fi ≡
wi

Vi

. (22)

3.2 Orbital weights from DFs

If we reverse the application of equation (22), and assign the orbital

weights according to some given DF f ,

wi = fi Vi , (23)

with fi ≡ f (I 1,i , . . . , I n,i ) now being the DF f evaluated at the

orbit’s position in integral space, then the DF f lib of the entire library,

which consists of the combined contributions of all orbits

flib =
∑

i

fiχi , (24)

will be the mapped version of f onto the library. Equation (23)

together with equations (6), (8) and (9) can be used to calculate the

LOSVDs, internal velocity profiles and density distribution of any

axisymmetric DF with known potential.

4 O R B I TA L P H A S E VO L U M E S

Two degrees of freedom. Binney, Gerhard & Hut (1985) have

shown that, for autonomous Hamiltonian systems with two degrees

of freedom, the phase volume of any orbit can be derived from the

SOS by integrating the times between successive orbital visits of

the SOS:

V ≈ "E

∫

SOS

T (r , vr ) dr dvr , (25)

where T (r , vr) is the time the orbit needs from (r , vr) to the next

intersection with the SOS, and "E defines a small but finite cell

around the orbit’s actual energy E characterizing the hypersurface

in phase space represented by the orbit.

Axisymmetric case. Richstone et al. (in preparation) carry over this

result to axisymmetric systems and approximate the phase volumes

as

V ≈ "Lz "E

∫

SOS

T (r , vr ) dr dvr . (26)

Here "Lz and "E denote the range of energies and angular mo-

menta represented by the orbit under consideration. Equation (26)

is valid whether the orbit is regular or chaotic.

Calculating the SOS integral. In what follows we describe our

novel implementation of equation (26), which improves on the

method of Richstone et al. (in preparation) to deliver higher-

precision phase-space volumes.

For all orbits in a sequence with common energy E and angular

momentum Lz we obtain a representative sample S of the SOS by

storing N sos imprints of each orbit in the SOS given by the radial

positions and velocities2 at the times t
k(s)
i of the orbital equatorial

crossings:

2 To reduce the computational effort we take the absolute values of the radial

velocities, thereby exploiting the symmetry of the SOS with respect to the

r-axis in our application.

Figure 2. A Voronoi tessellation of the SOS of Fig. 1. Open circles mark

individual intersections of orbits with the SOS; solid dots are points added

to make the Voronoi cells well behaved at the boundaries.

S ≡
{(

r s
i , v

s
i

)

: r s
i ≡ r

(

t
k(s)
i

)

, vs
i ≡

∣

∣vr

(

t
k(s)
i

)
∣

∣,

Ei = E, Lz,i = Lz, 1 ! s ! Nsos

}

. (27)

Typically, we integrate each orbit up to N sos = 80 intersections with

the SOS and choose N ′
sos = 60 points for the calculation of the

phase volumes randomly out of the whole set of intersections. We

also store the time intervals

t
(

r s
i , v

s
i

)

≡ t
k(s+1)
i − t

k(s)
i (28)

between two successive intersections.

Inspection of Fig. 1 shows that only a tessellation approach can

be used to numerically integrate equation (26) in the general case,

including regular, resonant and chaotic orbits. To this end we de-

cided to perform a Voronoi tessellation of S using the software of

Shewchuk (1996). This tessellation uniquely allocates a polygon to

each element of S. The edges of the polygon are located on the

perpendicular bisections of pairs containing the element under con-

sideration and one of its neighbours, and are equidistant to the actual

pair and a third element. For almost all elements the polygons are

closed and encompass an area containing the actual element and

all points that are closer to it than to any other element. The areas

enclosed by the polygons completely cover the space between the

elements and therefore characterize the fractional area inside the

SOS occupied by each orbit.

Fig. 2 shows the same SOS as in Fig. 1. The open circles represent

r and vr at the orbital equatorial crossings. The thin lines around

these circles mark the Voronoi cells allocated to the elements of S

and the solid dots show boundary points (see below).

With "As
i denoting the surface area enclosed by the polygon

around (r s
i , v

s
i ) ∈ S, the integral expression in the phase volume of

orbit i (cf. equation 26) can be approximated3 as
∫

SOS

T (r , vr ) dr dvr ≈
∑

s

t
(

r s
i , v

s
i

)

"As
i . (29)

At the boundary of the distribution of sampled points, there may

not be enough neighbours around a given element of S to close its

3 Note that the Poincaré map of the SOS onto itself is area-preserving, and

"As
i should be independent of s. The Voronoi tessellation, however, yields

only approximately constant "As
i . Nevertheless, as Section 5 shows, the

resulting phase volumes are of high accuracy.

C© 2004 RAS, MNRAS 353, 391–404

Thomas et al 2004

van den Bosch et al. 2008

• How do you know the orbit library 
is complete?

• Three conserved quantities: Integrals 
of motions (Energy, Angular 
momentum and I3)

• In (non-rotating) potentials all major 
orbits pass orthogonally through the 
x-z plane

• Sampling orbits is thus trivial

• Sampling schemes differ, but it is easy 
to show convergence is reached.

Thursday, April 12, 12



APPLICATIONS

• Dynamical mass

• Mass-to-light ratio

• Dark matter

• Super-Massive Black holes

660 R. C. E. van den Bosch et al.

Figure 6. Marginalized contours maps of the Schwarzschild models fitted

to the observables of the triaxial Abel model for different intrinsic shapes.

The contours denote 2, 4 (thick line) 8 and 32σ confidence levels. Areas for

which the MGE cannot be deprojected are left blank. The six upper panels

show the intrinsic shape parameters (p, q, u) and mass-to-light ratio M/L;

the three lower panels show the viewing angles (ϑ , ϕ, ψ). The combination

of ϑ and ϕ is shown in a Lambert equal-area projection, seen down the north

pole (z-axis). The x, y and z symbols give the location of views down those

axis. The red diamond in each panel indicates the input parameters from the

Abel model.

7 A P P L I C AT I O N TO N G C 4 3 6 5

We now apply our method to NGC 4365, one of the prototypical

galaxies with a KDC. It is a giant E3 elliptical and it was one of the

first objects in which minor axis rotation was discovered (Wagner,

Bender & Moellenhoff 1988; Bender, Saglia & Gerhard 1994). The

Figure 7. SAURON observations of NGC 4365. Top panels: from left- to right-hand side: the mean velocity, velocity dispersion and GH moments h3 and h4

of NGC 4365, as observed with the integral-field spectrograph SAURON. The pixel scale of the observations is 0.8 arcsec. Middle panels: point-symmetrized

kinematics with respect to the galaxy centre. Non-symmetric deviations cannot be reproduced by a triaxial model anyway and the symmetrization guides the

eye. Bottom panels: kinematic maps of the best-fitting Schwarzschild model, obtained by adding the weighted contributions of the best-fitting set of orbits. The

same colour levels are used for both data and model.

peculiar velocity structure of this galaxy was partially unravelled by

multiple long-slit observations (Surma & Bender 1995), but the full

two-dimensional kinematical structure was only revealed with the

integral-field spectrograph SAURON (Davies et al. 2001).

KDCs can be the result of a merger event, but can also occur

when the galaxy is triaxial and supports different orbital types in

the core and main body (Statler 1991). Davies et al. (2001) stud-

ied the first option and investigated the link between the kinematics

and the line-strength distribution of NGC 4365. They found that

the core and the main body are of similar age and that any mergers

that led to the formation of the KDC must have occurred at least

12 Gyr ago, as otherwise younger stellar populations would have

been detected. The orbital structure that supports the KDC and the

main body cannot be observed directly and must be inferred from

dynamical models. Statler et al. (2004) studied the viewing angles

and triaxiality of the system using an approach developed by Statler

(1994a), which uses Bayesian analysis to fit analytic solutions of

the continuity equation to an observed velocity field. They found

NGC 4365 to be strongly triaxial and seen almost along the long

axis. The triaxial Schwarzschild method that was presented in the

previous sections allows us to build comprehensive dynamical mod-

els of this galaxy and investigate its intrinsic structure.

7.1 Observations

NGC 4365 was observed with SAURON on the nights of 2000

March 29 and 30 for two different pointings, with an overlap in the

central region. The exposures were combined and rebinned into a

map with a slightly better spatial sampling (0.8 arcsec, compared

to 0.94 arcsec for the individual lenslets) and a coverage of 33 ×
63 arcsec2. Davies et al. (2001) give a full description of the obser-

vations.

To increase the signal-to-noise ratio (S/N) to sufficient levels for

accurate determination of the kinematics, the data cube was spatially

binned into 964 non-overlapping bins using the two-dimensional

Voronoi binning of Cappellari & Copin (2003). A minimum S/N

of 100 per spectral element was imposed. However, many of the

spectra have a much higher S/N value (up to ∼300), and more than

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 385, 647–666

• Orbital structure

• Distribution function 

• Dynamical decompositions

NGC4365, van den Bosch et al. (2008)
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FIG. 8.— The stellar kinematics measured for NGC 3998 from the OSIRIS data (top panels) and the predicted values (bottom panels) from the best-fit stellar
dynamical model with MBH = 8.1× 108 M!, I-band M/L = 5.0 M!/L!, and a shape described by p = 0.97 and q = 0.85 at 1 Re. The velocity map shows that
the galaxy is rotating rapidly, the velocity dispersion map displays a sharp peak within the inner 0.′′1, and the h3 map is anti-correlated with the velocity map.
The long axis of the IFU was aligned with the major axis of the nuclear gas disk at a position angle of 308◦, thus the top of the maps correspond to the northwest
side of the galaxy. The data and model maps are plotted on the same scale, with the ranges given by the color bar to the right and the minimum and maximum
values printed at the top of the maps. The kinematics measured from the bins in dark grey were deemed unreliable, and were excluded from the subsequent stellar
dynamical modeling.

concerns that stellar dynamical black hole mass measure-
ments may be underestimated if both the black hole and the
dark matter halo are not simultaneously modeled. The reason-
ing is that without a dark halo, theM/Lmay be overestimated
in order to compensate for the missing mass at large radii.
The M/L is assumed to be constant in the models, and thus a
smaller black hole would be needed to match the observed nu-
clear kinematics. By including the contribution of dark matter
in their re-examination of M87, Gebhardt & Thomas (2009)
found that the black hole mass increased by about a factor of
two. Likewise, McConnell et al. (2011a) noted a strong de-
pendence of the black hole mass on the dark halo when study-
ing NGC 6086. However, these studies utilized data in which
the quality and/or spatial resolution was insufficient to limit
the degeneracies between the black hole and stellar mass-to-
light ratio in the central regions. In contrast, black hole mass
measurements based upon observations that resolve rsphere ap-
pear to be insensitive to the inclusion of dark halos during the
modeling (Shen & Gebhardt 2010; Schulze & Gebhardt 2011;
Gebhardt et al. 2011).
We are unable to directly fit for the parameters of a dark

halo model because our kinematics do not extend out to large

enough radii. Instead, we selected a fixed model for the
dark halo. Two commonly used dark halo models are the
Navarro-Frenk-White (NFW) profile (Navarro et al. 1996)
and a distribution based on a cored logarithmic potential (Bin-
ney & Tremaine 1987; Thomas et al. 2005). Previous work
has found that both parameterizations give consistent results
(Thomas et al. 2007; Gebhardt & Thomas 2009; McConnell
et al. 2011a), and here we adopt the profile from a logarithmic
potential given by

ρDM(r) =
V 2c
4πG

3r2c + r2

(r2c + r2)2
. (1)

The parameters Vc and rc are the asymptotically constant cir-
cular velocity and the core radius, within which the dark mat-
ter density is approximately constant. We fixed Vc and rc
to values of 407 km s−1 and 10.7 kpc, respectively, which
were chosen for NGC 3998 using the galaxy B-band lumi-
nosity of 1.6× 1010 L! reported by the Hyperleda database
(Paturel et al. 2003) and the empirical relations by Thomas
et al. (2009). The relationships in Thomas et al. (2009) pro-
vide a way to select physically motivated parameters for the

10

FIG. 7.— Results of the stellar dynamical models after marginalizing over
the intrinsic shape of the galaxy. At each grey cross, a dynamical model was
calculated for the specified combination of black hole mass and I-bandM/L,
and the red cross marks the best-fit model. Overplotted are contours of∆χ2,
with the inner two contours denoting the 1σ and 2σ confidence levels, and
the thick red contour signifying the 3σ interval for one degree of freedom.
Contours beyond the 3σ confidence level are separated by a factor of two.

tween 4.2 and 6.2 M!/L!, while also sampling ten shapes.
These shapes have the lowest ten χ2 values from the two grid
runs described above, and they fully encompass the 3σ un-
certainties of p, q, and u when MBH is set to 2.2× 108 and
7.9× 108 M!. We therefore should be covering the range of
possible shapes for NGC 3998 during our search for the best-
fit MBH and M/L parameters.
The results of our dynamical models are summarized by

Figure 7, which displays the contours of χ2 as a function of
MBH andM/L after marginalizing over galaxy shape. The best
model has a χ2 of 1600, corresponding to a χ2 per degree
of freedom (χ2ν) of 1.5, with MBH = (8.1+2.0−1.9)× 108 M!, I-
band M/L = 5.0+0.3−0.4 M!/L!, and an intrinsic shape described
by p = 0.97 and q = 0.85 at 1 Re. The MBH and M/L er-
rors represent the 3σ statistical uncertainties, and the errors
for the shape parameters will be discussed below. The kine-
matics predicted from such a model are compared to the ob-
served OSIRIS, STIS, and LRIS data in Figures 8, 9, and
10, respectively. We additionally compare the OSIRIS ve-
locity dispersions to those predicted from models with the
best-fit mass of MBH = 8.1× 108 M!, a smaller black hole
with MBH = 1.3× 108 M!, and a larger black hole with
MBH = 3.6× 109 M! in Figure 11. This figure demonstrates
that our best-fit black hole mass is a reasonable one, and clear
differences between the predicted velocity dispersions for the
models with a smaller and larger black hole and the observed
kinematics can be seen by eye. The more massive black hole
produces velocity dispersions that are much too large at the
center, while the smaller black hole is unable to match the
sharp rise in the observed nuclear velocity dispersion.
We calculated another model grid holding MBH fixed at

MBH = 8.1×108M! and allowingM/L and the shape parame-
ters to vary. This grid allowed us to derive the uncertainties on
the shape parameters, having previously determined the best-

fit black hole mass. We again sampled 128 galaxy shapes with
axis ratios of 0.60≤ p≤ 1.00, 0.40≤ q≤ 0.88, and all possi-
ble values of u, and examined 11 I-bandM/L values between
4.2 and 6.2 M!/L!. We found that the galaxy shape can be
described with the ratios p = 0.97+0.03−0.10 and q = 0.85+0.00−0.26 (3σ
uncertainties) at 1 Re. In Figure 12, we plot the best-fit axis
ratios p and q and their uncertainties at all radii, extending
out to 100′′. We further show the radial variation of the triax-
iality parameter, T = (1− p2)/(1− q2), on the same plot. An
upper error bar of zero is measured for q because this ratio
is limited by the observed average flattening of the 2D Gaus-
sians from the MGE model. Thus, the best-fit intrinsic shape
is round as the HST/CFHT images allow, and consistent with
an oblate axisymmetric spheroid. Furthermore, we were un-
able to place strong constrains on the viewing angles, finding
that the inclination ranges from θ = 38◦ to θ = 90◦ (edge-on),
φ = −90+82−0 , and ψ = 90+0−4 (3σ uncertainties). These results
are consistent with previous stellar dynamical studies of other
early-type galaxies, in particular the work of Krajnović et al.
(2005) and van den Bosch & van de Ven (2009) who find that
the viewing angles are highly degenerate.

8.1. Additional Sources of Uncertainty
The 3σ errors on MBH presented above represent the for-

mal model fitting uncertainty, and account for the random
noise within the stellar dynamical models. We further ex-
plored other sources of uncertainty that are not included in
the statistical errors but that could have an effect the MBH de-
termination. We summarize the results of these model grids
below.
Stellar Density Distribution: Care must be taken to sepa-

rate the AGN light from the stellar contribution when con-
structing the luminous mass model. Often, this is accom-
plished by removing the innermost Gaussian component from
the MGE model, however NGC 3998 exhibits a very steep
surface brightness profile and some starlight may still be con-
tained within the central component. In the analysis presented
above, we assumed that all of the light from the central MGE
Gaussian was due to the stars. Here, we consider the other
extreme, where all the light from the inner MGE component
comes from the AGN.
After removing the central Gaussian component from the

MGE model, we followed the same procedure outlined in §8.
We first calculated stellar dynamical models fixing MBH to
2.2×108M! and 7.9×108M! in order to determine the most
probable galaxy shapes. Then, we ran model grids sampling
over the ten best galaxy shapes, while varying MBH between
5.0× 107 and 5.0× 109 M! and M/L between 4.2 and 6.2
M!/L!. We found a very round, but oblate, intrinsic shape
for the galaxy, withMBH = (10.1+0.7−3.5)×108 M! and an I-band
M/L = 4.8+0.6−0.1 M!/L! (3σ uncertainties). This best-fit stel-
lar dynamical model is a worse description of the observa-
tions (χ2 = 1619) compared to the best model presented pre-
viously in §8 (χ2 = 1600). Moreover, when excluding the cen-
tral MGE component, the dynamical models for every com-
bination of MBH and M/L have a higher χ2 than the stellar
dynamical models constructed from a mass model with all 12
Gaussian components. For this reason, and because the black
hole masses determined using the two MGE models are fully
consistent within the statistical uncertainties, covering nearly
identical MBH ranges, we view the best-fit model from §8 as
our final result.
Dark Halo: Work by Gebhardt & Thomas (2009) has raised

Walsh et al 2012
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FIG. 10.— The observed LRIS kinematics (black) and predicted values from the best-fit dynamical model (red line). The LRIS observations were obtained at
four position angles: along the major axis of the nuclear gas disk (PA = 308◦), along the minor axis (PA = 218◦), and at two intermediate angles (PA = 353◦ and
PA = 263◦). For each of the slit positions, the velocity, velocity dispersion, h3, and h4 are plotted as a function of location along the slit relative to the nucleus.
These large-scale kinematics exhibit similar features to those seen from the high angular resolution data, which include rapid rotation, a steep rise in the velocity
dispersion, and an anti-correlation between h3 and V . Furthermore, h4 is symmetric about the center with a slight peak at the nucleus.

FIG. 11.— Comparison between the observed velocity dispersions over the OSIRIS field of view and the predicted ones for various dynamical models. The
models were constructed with different black hole masses (the best-fitMBH of 8.1×108 M", a larger black hole withMBH = 3.6×109 M", and a smaller black
hole ofMBH = 1.3×108 M"), but have the same I-bandM/L (5.0M"/L") and intrinsic shape (p = 0.97 and q = 0.85 at 1 Re). All maps are plotted on the same
scale, given by the color bar to the right along with the minimum and maximum values listed on top of the left-most panel. Observed kinematics measured from
the grey bins were deemed unreliable, and we do not show the model predictions in these bins.

10

FIG. 7.— Results of the stellar dynamical models after marginalizing over
the intrinsic shape of the galaxy. At each grey cross, a dynamical model was
calculated for the specified combination of black hole mass and I-bandM/L,
and the red cross marks the best-fit model. Overplotted are contours of∆χ2,
with the inner two contours denoting the 1σ and 2σ confidence levels, and
the thick red contour signifying the 3σ interval for one degree of freedom.
Contours beyond the 3σ confidence level are separated by a factor of two.

tween 4.2 and 6.2 M!/L!, while also sampling ten shapes.
These shapes have the lowest ten χ2 values from the two grid
runs described above, and they fully encompass the 3σ un-
certainties of p, q, and u when MBH is set to 2.2× 108 and
7.9× 108 M!. We therefore should be covering the range of
possible shapes for NGC 3998 during our search for the best-
fit MBH and M/L parameters.
The results of our dynamical models are summarized by

Figure 7, which displays the contours of χ2 as a function of
MBH andM/L after marginalizing over galaxy shape. The best
model has a χ2 of 1600, corresponding to a χ2 per degree
of freedom (χ2ν) of 1.5, with MBH = (8.1+2.0−1.9)× 108 M!, I-
band M/L = 5.0+0.3−0.4 M!/L!, and an intrinsic shape described
by p = 0.97 and q = 0.85 at 1 Re. The MBH and M/L er-
rors represent the 3σ statistical uncertainties, and the errors
for the shape parameters will be discussed below. The kine-
matics predicted from such a model are compared to the ob-
served OSIRIS, STIS, and LRIS data in Figures 8, 9, and
10, respectively. We additionally compare the OSIRIS ve-
locity dispersions to those predicted from models with the
best-fit mass of MBH = 8.1× 108 M!, a smaller black hole
with MBH = 1.3× 108 M!, and a larger black hole with
MBH = 3.6× 109 M! in Figure 11. This figure demonstrates
that our best-fit black hole mass is a reasonable one, and clear
differences between the predicted velocity dispersions for the
models with a smaller and larger black hole and the observed
kinematics can be seen by eye. The more massive black hole
produces velocity dispersions that are much too large at the
center, while the smaller black hole is unable to match the
sharp rise in the observed nuclear velocity dispersion.
We calculated another model grid holding MBH fixed at

MBH = 8.1×108M! and allowingM/L and the shape parame-
ters to vary. This grid allowed us to derive the uncertainties on
the shape parameters, having previously determined the best-

fit black hole mass. We again sampled 128 galaxy shapes with
axis ratios of 0.60≤ p≤ 1.00, 0.40≤ q≤ 0.88, and all possi-
ble values of u, and examined 11 I-bandM/L values between
4.2 and 6.2 M!/L!. We found that the galaxy shape can be
described with the ratios p = 0.97+0.03−0.10 and q = 0.85+0.00−0.26 (3σ
uncertainties) at 1 Re. In Figure 12, we plot the best-fit axis
ratios p and q and their uncertainties at all radii, extending
out to 100′′. We further show the radial variation of the triax-
iality parameter, T = (1− p2)/(1− q2), on the same plot. An
upper error bar of zero is measured for q because this ratio
is limited by the observed average flattening of the 2D Gaus-
sians from the MGE model. Thus, the best-fit intrinsic shape
is round as the HST/CFHT images allow, and consistent with
an oblate axisymmetric spheroid. Furthermore, we were un-
able to place strong constrains on the viewing angles, finding
that the inclination ranges from θ = 38◦ to θ = 90◦ (edge-on),
φ = −90+82−0 , and ψ = 90+0−4 (3σ uncertainties). These results
are consistent with previous stellar dynamical studies of other
early-type galaxies, in particular the work of Krajnović et al.
(2005) and van den Bosch & van de Ven (2009) who find that
the viewing angles are highly degenerate.

8.1. Additional Sources of Uncertainty
The 3σ errors on MBH presented above represent the for-

mal model fitting uncertainty, and account for the random
noise within the stellar dynamical models. We further ex-
plored other sources of uncertainty that are not included in
the statistical errors but that could have an effect the MBH de-
termination. We summarize the results of these model grids
below.
Stellar Density Distribution: Care must be taken to sepa-

rate the AGN light from the stellar contribution when con-
structing the luminous mass model. Often, this is accom-
plished by removing the innermost Gaussian component from
the MGE model, however NGC 3998 exhibits a very steep
surface brightness profile and some starlight may still be con-
tained within the central component. In the analysis presented
above, we assumed that all of the light from the central MGE
Gaussian was due to the stars. Here, we consider the other
extreme, where all the light from the inner MGE component
comes from the AGN.
After removing the central Gaussian component from the

MGE model, we followed the same procedure outlined in §8.
We first calculated stellar dynamical models fixing MBH to
2.2×108M! and 7.9×108M! in order to determine the most
probable galaxy shapes. Then, we ran model grids sampling
over the ten best galaxy shapes, while varying MBH between
5.0× 107 and 5.0× 109 M! and M/L between 4.2 and 6.2
M!/L!. We found a very round, but oblate, intrinsic shape
for the galaxy, withMBH = (10.1+0.7−3.5)×108 M! and an I-band
M/L = 4.8+0.6−0.1 M!/L! (3σ uncertainties). This best-fit stel-
lar dynamical model is a worse description of the observa-
tions (χ2 = 1619) compared to the best model presented pre-
viously in §8 (χ2 = 1600). Moreover, when excluding the cen-
tral MGE component, the dynamical models for every com-
bination of MBH and M/L have a higher χ2 than the stellar
dynamical models constructed from a mass model with all 12
Gaussian components. For this reason, and because the black
hole masses determined using the two MGE models are fully
consistent within the statistical uncertainties, covering nearly
identical MBH ranges, we view the best-fit model from §8 as
our final result.
Dark Halo: Work by Gebhardt & Thomas (2009) has raised
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Figure A9. Power-law galaxies: format same as previous figure. Figure A10. Power-law galaxies: format same as previous figure.
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