Lessons from the Galactic centre

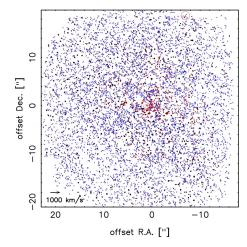
John Magorrian

"Dynamics meets kinematics tracers", Thu 12 Apr 2012

▲御▶★臣▶ □臣

The problem

Schoedel et al (2009) measure (x, y, v_x, v_y) for sample of 6000 stars within 1pc of Galactic centre:



What's the mass distribution $\rho(r)$?

Take published PMs at face value.

We understand how to find f given Φ .

Can I find Φ by marginalising over *f* for a non-toy problem? (No, not in this talk.)

Compare two different methods:

- simple Jeans models
- full-on OS method

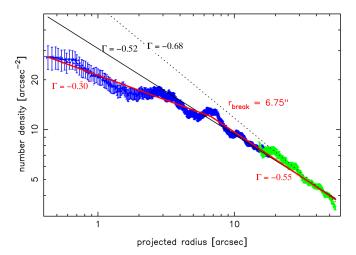
Bonus: independent measurements of M_{\bullet} (S stars).

I. Simple models using the Jeans equations

Galactic centre in context (Schödel et al. 2007)

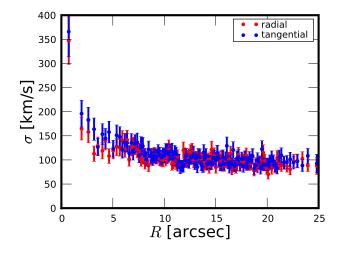
Surface density profile from NACO (10" = 0.4 pc) and ISAAC:

stellar surface number density, $9.75 < mag_{\kappa} < 17.75$



Galactic centre in context (Schödel et al. 2009)

Ignore rotation. Binned $\sigma_R(R)$ and $\sigma_{\phi}(R)$ from PM data:



Simple Jeans models of the kinematics

Assumptions: Mass distribution is

- spherical
- In steady state
- smooth.

More assumptions: Stars (late-type only!)

are drawn fairly from number density distribution

$$j(r) \propto r^{lpha} \left(1 + rac{r}{r_0}
ight)^{-1.8-lpha}$$
 with $r_0 = 1 ext{pc}$

isotropic velocity distribution.

Given trial M_{\bullet} and mass density $\rho(r)$:

- Calculate enclosed mass M(< r);
- Integrate Jeans equation to find intrinsic (isotropic) velocity disperson:

$$j(r)\sigma^{2}(r) = \int_{r}^{\infty} j(r') \frac{GM(< r')}{r'} \mathrm{d}r';$$

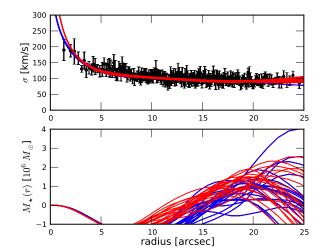
Project this *j*σ² along the line of sight;
 Compare to binned dispersions
 This gives me χ²(M_•, ρ)

Note: linear relationship between ρ and σ_p^2 :

$$\sigma_{\rm p}^2 = \boldsymbol{P} \rho!$$

"Non-parametric" stellar potentials (Following Magorrian & Ballantyne 2001)

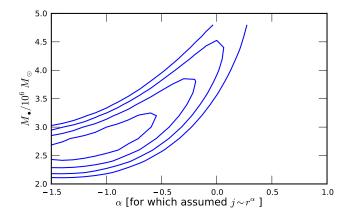
Invert $\sigma_p^2 = P\rho$, with smoothness penalty on $\rho(r)$. Results for $M_{\bullet} = 3.6 \times 10^6 M_{\odot}$ and $j \sim r^0$ and $j \sim r^{-1}$



|□ ▶ ▲ □ ▶ □ □

Scan over isotropic Jeans models

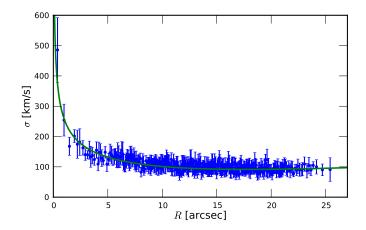
 χ^2 as a function of assumed M_{\bullet} and number-density slope



Assumptions: isotropy; smoothing on ρ ; binning to get σ_p

Scan over isotropic Jeans models

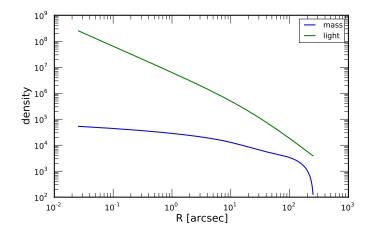
Best-fit model $M_{\bullet} = 2.8 \times 10^6 M_{\odot}$



Assumptions: isotropy; smoothing on ρ ; binning to get σ_p

Scan over isotropic Jeans models

Best-fit model $M_{\bullet} = 2.8 \times 10^6 M_{\odot}$



Assumptions: isotropy; smoothing on ρ ; binning to get σ_p

Conclusions from isotropic Jeans models

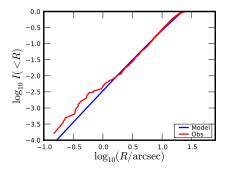
- 1 BH mass $\sim 2.8 \times 10^6 \, M_{\odot}$
 - less than the accepted $M_{\bullet} \simeq 4 \times 10^6 M_{\odot}$.
- 2 $M_{\star} \sim 2 \times 10^6 M_{\odot}$ within 1 pc, having
- **③** flat core in mass density profile, $\rho \sim r^{\alpha}$, $\alpha \sim 0$.

Models forced to have $M_{\bullet} \simeq 4 \times 10^6 M_{\odot}$ have hole in $\rho(r)$!

Limitations of isotropic Jeans models

- More information to be extracted than just $\sigma_R(R)$, $\sigma_{\phi}(R)$
- 2 The NSC is slightly anisotropic: $\frac{\langle v_R^2 \rangle}{\langle v_L^2 \rangle} = 0.91$

We don't really know j(r) well:

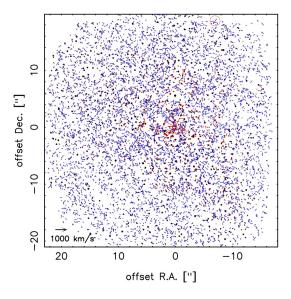


Affects predicted $\sigma(R)$ profiles.

II.Orbit-superposition models

Selection function

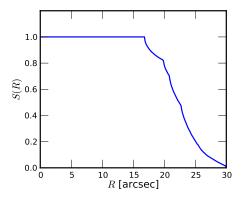
Kinematical survey has limited spatial extent:



▲御 ▶ ▲ 臣 ▶ 二 臣

Selection function

Multiply model likelihoods by selection function



For model with pdf f(x), likelihood of measuring $x = x_0$ is

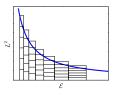
$$p(x_0|f,S) = \frac{f(x_0)S(x_0)}{\int f(x)S(x)\,\mathrm{d}x}.$$

Spherical orbit-superposition models (aka Schwarzschild models)

Galaxy = Potential Φ + orbits in Φ .

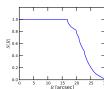
Given trial potential $\Phi(M_{\bullet}, M_{\star}, \alpha)$:

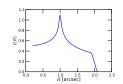
• Partition phase space into blocks, weights \boldsymbol{w} , $\sum_{j} w_{j} = 1$:

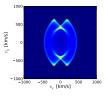


[DF $f(\mathcal{E}, L^2)$ is correctly normalised probability distribution]

Calculate $P_{ij} = p(Obs_i | block_j, S)$ and $I_j = p(Anything | block_j, S)$ for selection function *S*







Spherical orbit-superposition models

(aka Schwarzschild models, following Rix et al 1997)

3 Given this Φ , find weight vector **w** that maximises

$$p(D|\Phi \boldsymbol{w} \boldsymbol{S}) = \prod_{i=1}^{n_{\text{obs}}} \left[\frac{\sum_{j} P_{ij} w_{j}}{\sum_{j} I_{j} w_{j}} \right]^{n_{j}}$$

subject to $\sum_{j} w_{j} = 1$. n_{j} is the number of stars observed in the *i*th "bin." Assign (Bzzzt)

$$p(\Phi|D) = \max_{\boldsymbol{w}} p(D|\Phi \boldsymbol{w}).$$

[That is, take best \boldsymbol{w} as representative of Φ .]

III. Finding the best-fit model (technical details)

Expectation-maximisation algorithm

Problem

Find weight vector w that maximises

$$p(D|\Phi wS) = \prod_{i} \left[\frac{\sum_{j} P_{ij} w_{j}}{\sum_{j} I_{j} w_{j}} \right]^{n_{i}}, \qquad (1)$$

subject to $\sum_{j} w_{j} = 1$.

Solution: If we had a mixture model with

$$p'(D|\Phi \boldsymbol{w}') = \prod_{i} \sum_{j} P'_{ij}(\Phi) w'_{j}$$
 and $\sum_{j} w'_{j} = 1,$ (2)

then we could use the EM algorithm to find best (Φ, \boldsymbol{w}') .

So, turn (1) into (2) by taking $w'_j = I_j w_j / \sum_k I_k w_k$ and $P'_{ij} = P_{ij} / I_j$.

Expectation-maximisation algorithm

Full EM algorithm varies both **w** and Φ . Calculating $P_{ij}(\Phi)$ and $I_j(\Phi)$ is expensive, so I hold Φ fixed.

Resulting algorithm

$$w_{j}^{\prime new} = w_{j}^{\prime old} \frac{1}{NI_{j}} \sum_{i} \frac{n_{i}}{\sum_{k} P_{ik} w_{k}} P_{ij},$$
from which

$$w_{j} = \frac{w_{j}^{\prime}}{\sum_{k} w_{k}^{\prime}}.$$

Nothing more than Richardson–Lucy with an extra I_i^{-1} factor...

Assumptions behind the orbit superposition models

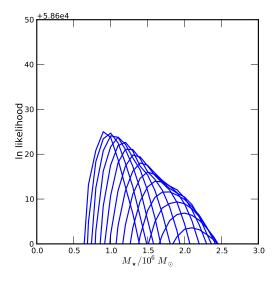
Model assumptions

- spherical, non rotating, in equilibrium
- Mass profile $\rho \sim r^{-lpha}$ (Recycling $_{lpha}$, sorry...)
 - Free parameters in Φ : M_{\bullet} , M_{\star} (< 1pc), α
- $n_{\mathcal{E}} \times n_L = 50x10$ orbit blocks
- simple selection function.

Not included in the models

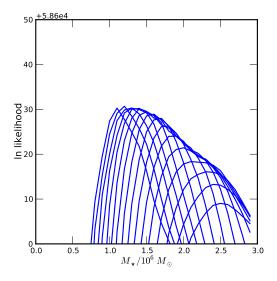
- any assumption about *j*(*r*)
- any assumption about isotropy
- any binning whatsoever (except for the DF orbit blocks...)

Results for $M_{\bullet} = 3.6 \times 10^6 M_{\odot}$: Models want $\rho \sim r^{-\alpha}$ with $\alpha < 0$

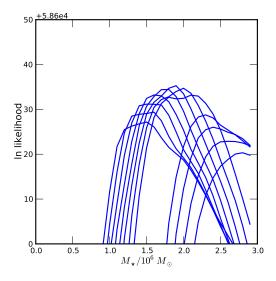


★ 伊 ▶ ★ 陸 ▶ → 臣

Results for $M_{\bullet} = 3.2 \times 10^6 M_{\odot}$:

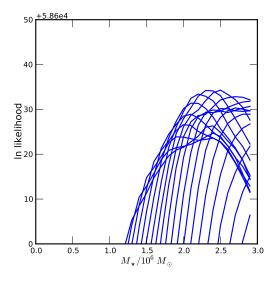


Results for $M_{\bullet} = 2.8 \times 10^6 M_{\odot}$:



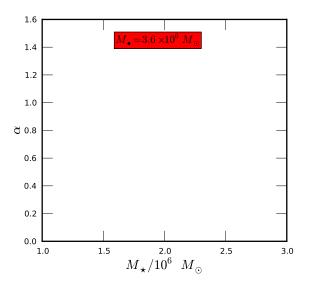
★御★★注≯ 注

Results for $M_{\bullet} = 2.4 \times 10^6 M_{\odot}$:



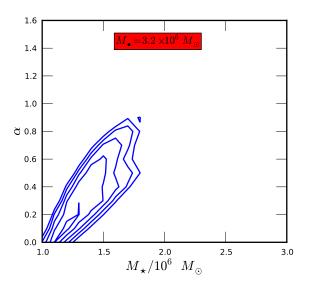
▲ 聞 ▶ ▲ 臣 ▶ ― 臣

Contours spaced at $\Delta \log p(\Phi|D) = 1$ (i.e., " $\Delta \chi^2 = 2$ "):



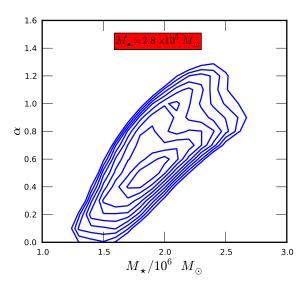
(個) (注) (注)

Contours spaced at $\Delta \log p(\Phi|D) = 1$ (i.e., " $\Delta \chi^2 = 2$ "):



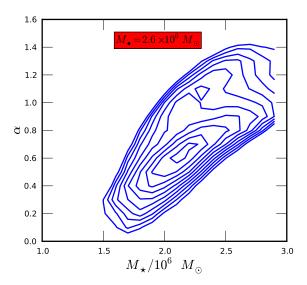
| 伊 ▶ ▲ 臣 ▶ | 臣

Contours spaced at $\Delta \log p(\Phi|D) = 1$ (i.e., " $\Delta \chi^2 = 2$ "):



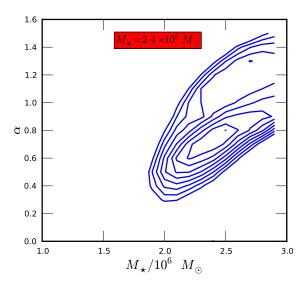
||□|| ▶ || ● ▶ || ●

Contours spaced at $\Delta \log p(\Phi|D) = 1$ (i.e., " $\Delta \chi^2 = 2$ "):



(個) (日) 日日

Contours spaced at $\Delta \log p(\Phi|D) = 1$ (i.e., " $\Delta \chi^2 = 2$ "):



1**∂** ► < E ► E

Summary of OS models

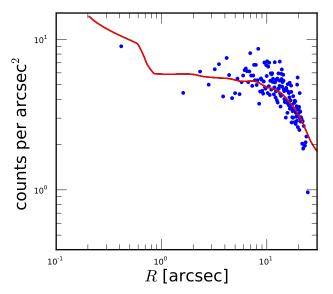
Best-fitting orbit-superposition model has:

•
$$M_{\bullet} = \underbrace{2.6}_{\pm 0.1 \text{ish}} \times 10^6 M_{\odot}$$
, around which

•
$$M_{\star} = 2.1 \times 10^6 M_{\odot}$$
 within 1 pc.

Broadly consistent with Jeans.

In projection



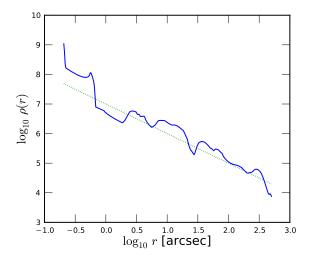
(@) × E > _ E

In projection

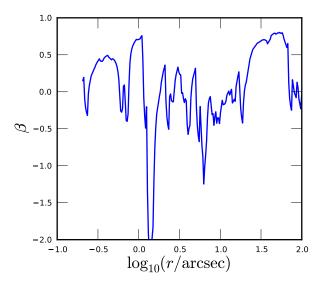


(御) ★ 理 ▶ 二 理

3d density (dotted: mass, solid: light)



Anisotropy parameter



(個) (注) (注)

Summary

OS models imply \sim isotropic cluster in which mass follows light around central $M_{\bullet} \simeq (2.6 \pm 0.1) \times 10^6 M_{\odot}$.

My own Jeans analysis broadly agrees. So do independent pre-2003 analyses (for M_{\bullet} at least). The S stars don't... (post 2003)

Possible resolutions:

- I don't know where Sgr A* is.
- Observational selection effects aren't as simple as I've assumed. (Bellini talk...)
- Cluster isn't spherical, non-rotating and in equilibrium.
 - e.g., contamination by disc of early-type stars?

Summary

OS models imply \sim isotropic cluster in which mass follows light around central $M_{\bullet} \simeq (2.6 \pm 0.1) \times 10^6 M_{\odot}$.

My own Jeans analysis broadly agrees. So do independent pre-2003 analyses (for M_{\bullet} at least). The S stars don't... (post 2003)

Possible resolutions:

- I don't know where Sgr A* is.
- Observational selection effects aren't as simple as I've assumed. (Bellini talk...)
- Cluster isn't spherical, non-rotating and in equilibrium.
 - e.g., contamination by disc of early-type stars?

Lessons

If the S-stars result didn't exist, I'd preach:

- Still haven't marginalised f.
- Best-fit OS model fits data too well.
- 3 We're looking for O(1) changes in log likelihood \sim 59000
 - calculate individual likelihoods as accurately as possible.
- Choice of Φ relies on inspiration.

Sobering observation

This looks like a relatively clean problem:

- simple geometry
- easy-to-interpret observations
- simple selection function.