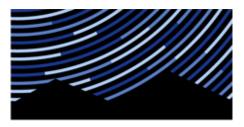
April 13, 2012

Measuring Dark Matter Profiles Non-Parametrically in dSphs*

* (by dSphs I mean Draco)

John Jardel, University of Texas



McDonald Observatory THE UNIVERSITY OF TEXAS AT AUSTIN

With: Karl Gebhardt (UT) Maximilian Fabricius (MPE) Niv Drory (UNAM) Michael Williams (MPE)

"Dynamics Meets Kinematic Tracers"

Local Group dSphs

Why study Local Group dSphs?

DM dominated

Lowest mass products of galaxy formation

Large public data sets

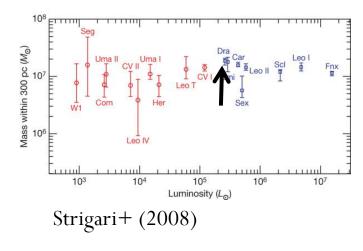
Individual stars resolved

"Dynamical" questions

What is the shape of the density profile? What is the nature and degree of velocity anisotropy?

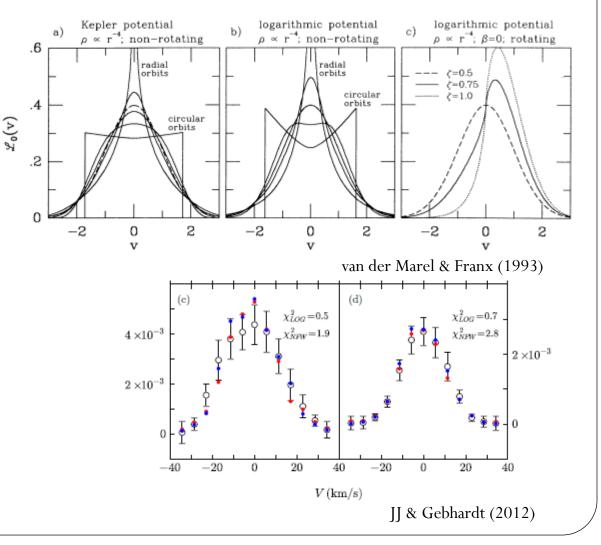
Are the dSphs consistent with the DM halos found in Λ CDM simulations?

ESO/Digitized Sky Survey 2



Why Schwarzschild Models?

Uses additional information in the LOSVDs to constrain anisotropy and break mass-anisotropy degeneracy



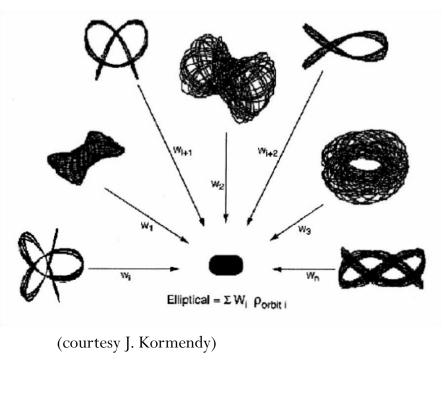
Our models must match the LOSVDs at each velocity bin

Schwarzschild Modeling

- 1. Guess potential Φ guess $\rho(r)$ and solve for Φ
- 2. Build orbit library launch orbits in Φ
- 3. Weight orbits to match projected kinematics & luminosity profile

 $\rightarrow \chi^2 + \text{max entropy constraint}$

4. Rinse, repeat choose new Φ (or $\rho(r)$) and repeat



How we choose $\rho(r)$ is the only major difference!

Non-parametric Schwarzschild Models

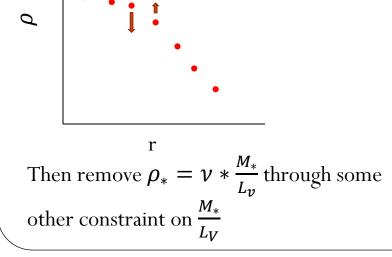
Traditional Schwarzschild modeling:

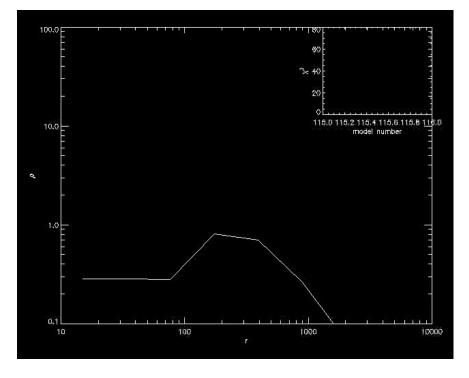
NFW: c, r_s free parameters

 $\rho(r) = \rho_*(r) + \rho_{DM}(r)$

Logarithmic potential: V_c , r_c free parameters

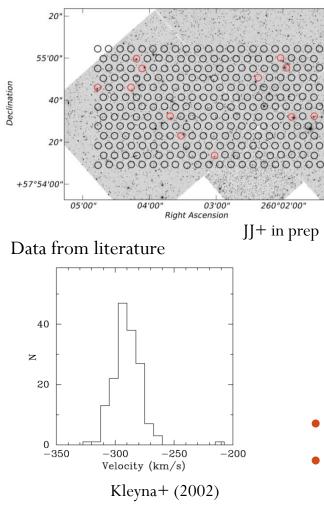
Non-parametric Schwarzschild modeling:

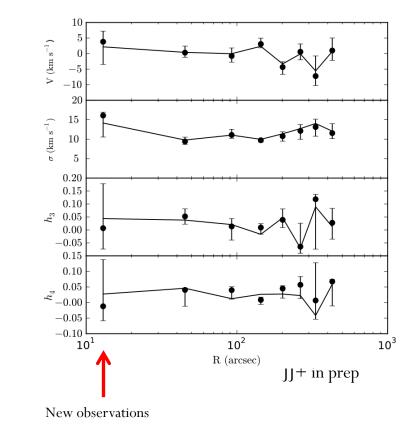




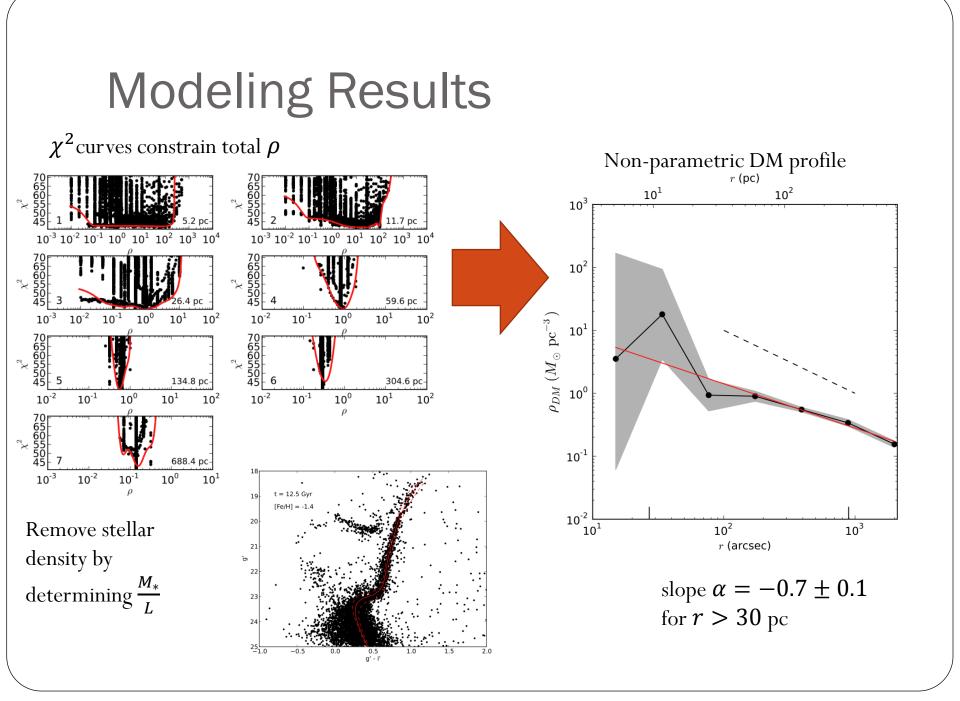
Draco: A test case

New VIRUS-W IFU observations (55" x 105")





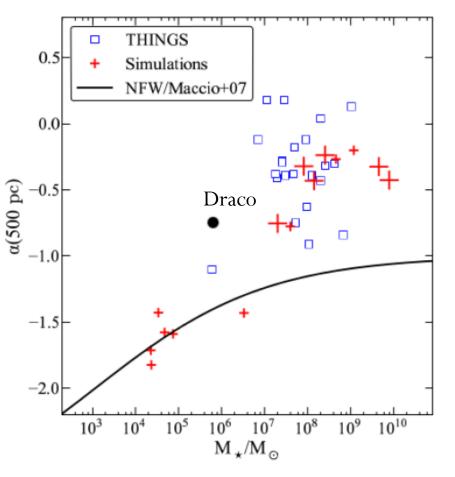
- 158 (from literature) + 12 (new) radial velocities
- 8 LOSVDs binned in annuli from 8 pc to 500 pc



And now for some wild speculation...

THINGS: HI survey of late-type field dwarfs

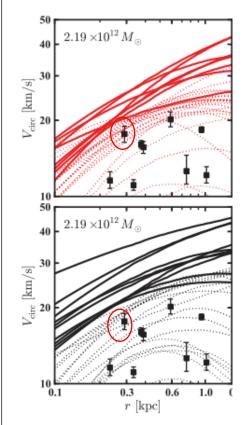
Simulations: Governato+ (2012) Nbody/hydro cosmological simulations of THINGS-like dwarfs



Governato+ (2012) with Draco added

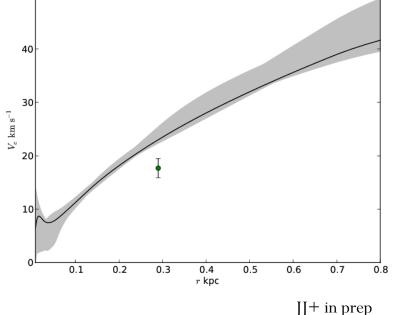
How does Draco compare to ΛCDM simulations?

50



Estimate $V_c(r = r_{1/2})$ via $M_{1/2}$ mass estimator for each dSph (black points)

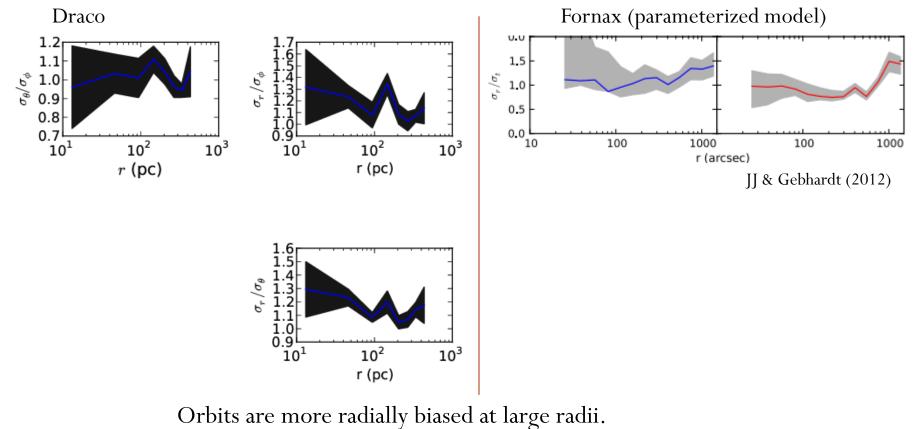
Compare to $V_c(r)$ curves of subhalos from Aquarius simulation (lines)



 $M_{1/2}$ predicts about half as much mass as our model

Boylan-Kolchin, Bullock, & Kaplinghat (2012)

Velocity anisotropy



Consistent with tidal stirring scenarios (Łokas+, Kazantzidas+)

Draco summary

DM profile shape:

- NPSM constrains $ho_{DM}(r)$ for 30 < r < 700 pc
- well-fit by power law with $\alpha = -0.7 \pm 0.1$ over this range

Halo Mass:

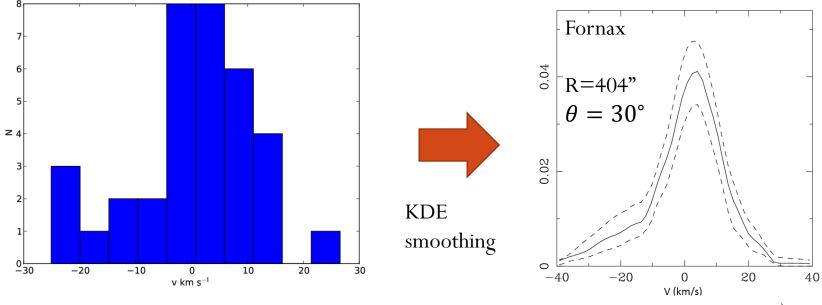
- $M(r_h) \sim 1.7 \times M_{1/2}$ estimator
- $V_c(r)$ profile indicates a more massive halo alleviating "massive failures" problem (at least for Draco)

Things that aren't so great:

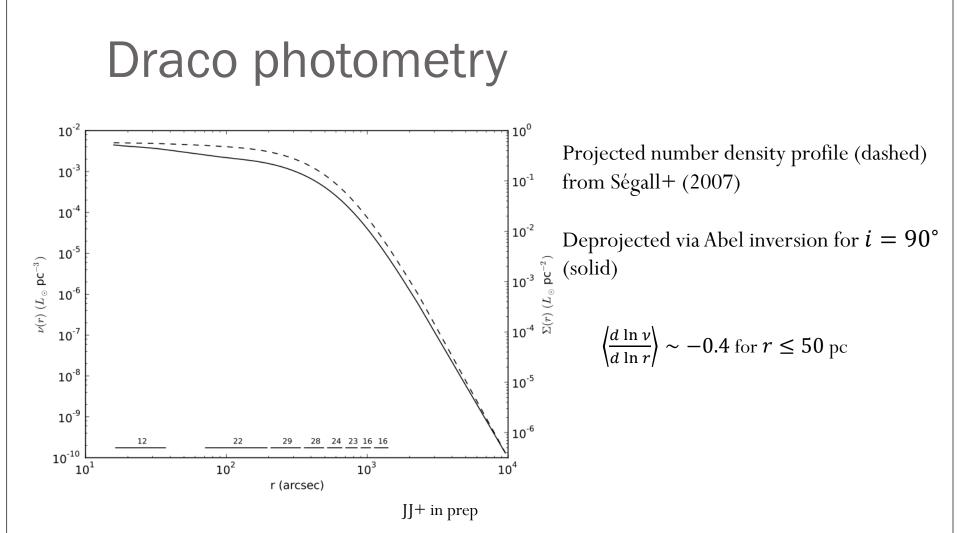
- 1. Binned velocities
- 2. "Non-Magorrian" treatment of best-fitting DF
- 3. Only 170 RVs in 8 LOSVDs

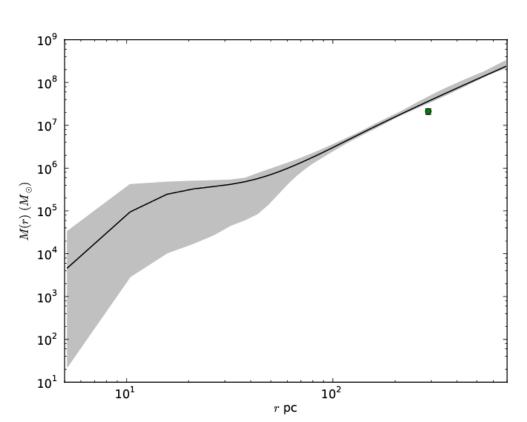
Extra Slides

Computing LOSVDs from histograms



JJ & Gebhardt (2012)





Draco's mass

Green point is

$$\begin{split} M_{1/2} &= 4G^{-1} \langle \sigma_{LOS}^2 \rangle R_e \\ M_{1/2} &= 2.11 \pm 0.3 \times 10^7 M_{\odot} \end{split}$$

Our model has:

$$M(r_h) = 3.6^{+0.92}_{-0.28} \times 10^7 M_{\odot}$$

Orbit sampling

- Orbits in axisymmetric potentials respect 3 isolating integrals of motion (E, L_z, I_3)
- For each (E, L_z) :

$$v_{max} \equiv v_{r,i} = \sqrt{2[E - \Phi(r_l)] - \frac{L_z^2}{r_l^2}} \text{ (touches ZVC, } v_{\theta} = 0 \text{)}$$

• Stepwise decrease $v_{r,i}$ and increase $v_{\theta,i} = \sqrt{2[E - \Phi(r_l)] - \frac{L_z^2}{r_l^2} - v_{r,i}^2}$

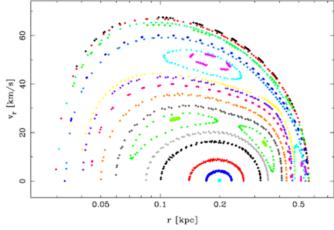


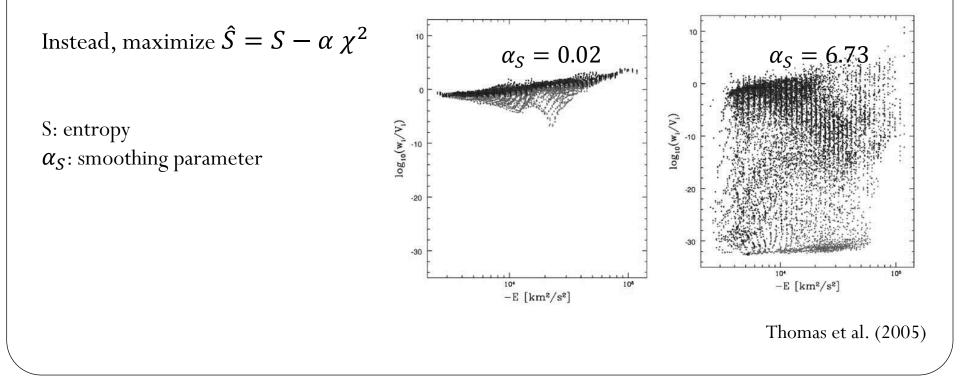
Figure 1. Example of a surface of section for a flattened Hernquist model (details in the text). All orbits have been integrated for $N_{SOS} = 80$ intersections with the SOS.

Each invariant curve represents an orbit. All orbits have same (E, L_z) and varying I_3 in this SOS.

(2004 MNRAS 353 391)

Maximum Entropy Regularization

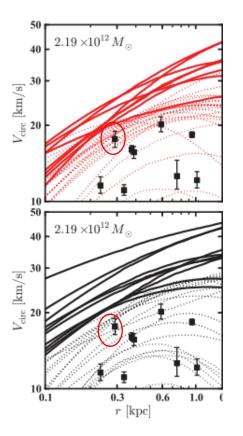
Typical models have >10,000 orbits and only 20 LOSVDS with 15 velocity bins (300 observables)

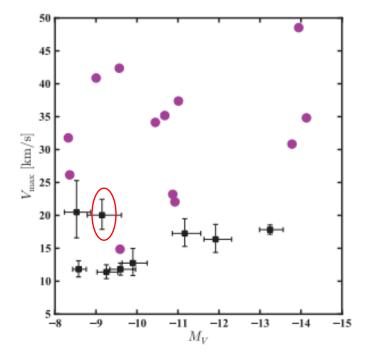


How does Draco compare to ΛCDM simulations?

Estimate $V_c(r = r_{1/2})$ via $M_{1/2}$ mass estimator for each dSph (black points)

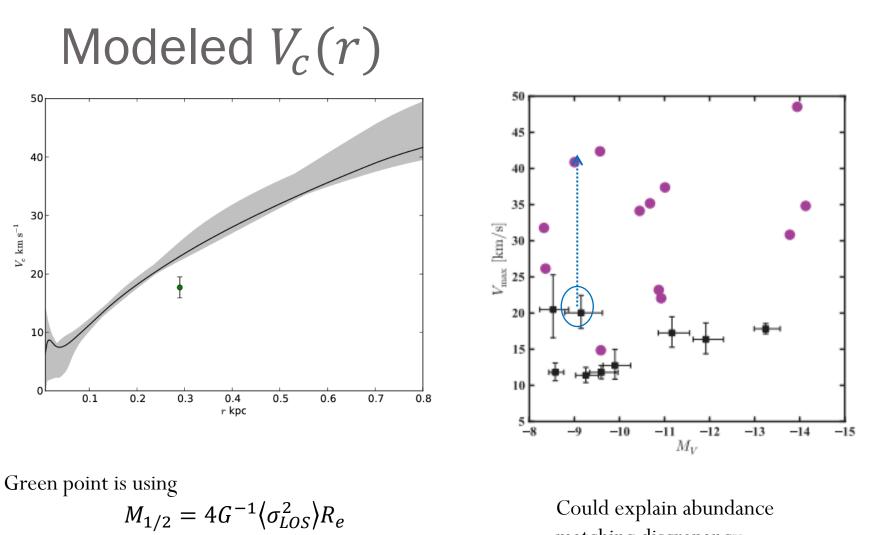
Compare to $V_c(r)$ curves of subhalos from Aquarius simulation (lines)





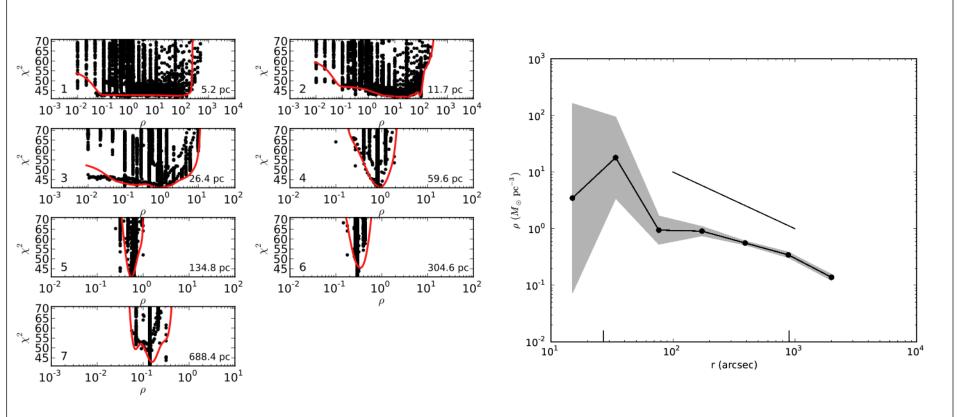
Scale $V_c(r_{1/2})$ to V_{max} and match (extrapolated) luminosity function to subhalo mass function from simulations

Boylan-Kolchin, Bullock, & Kaplinghat (2012)



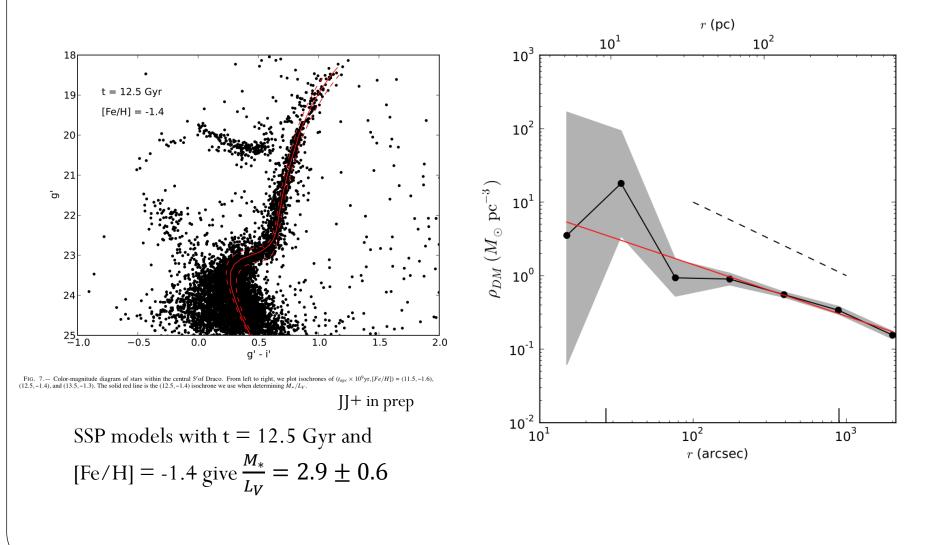
Our models have $\sim 2x$ more mass than $M_{1/2}$ predicts

matching discrepancy

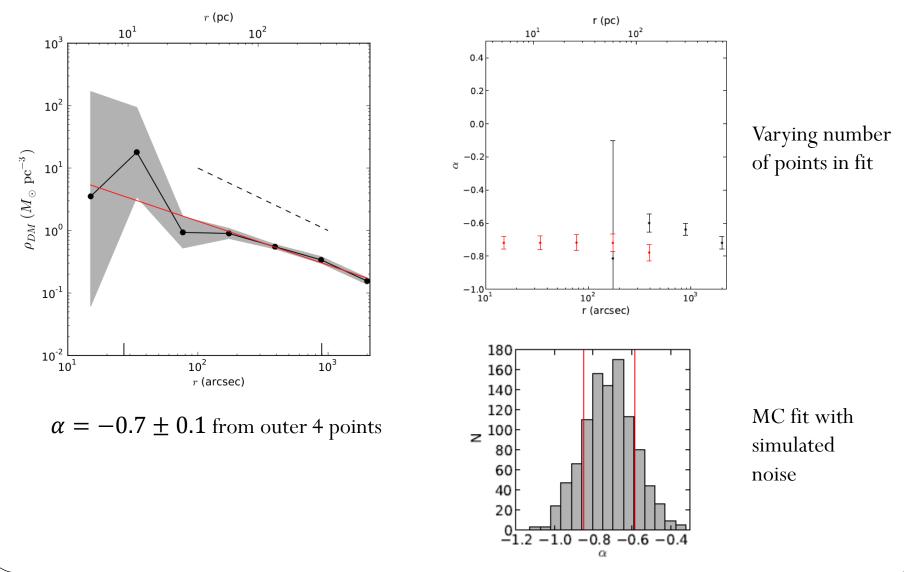


Models

Stellar density subtraction



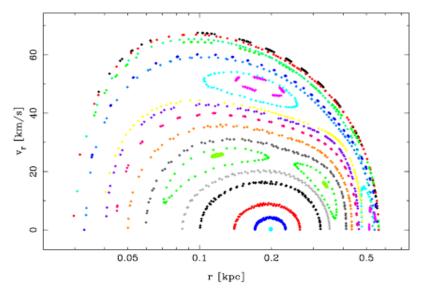
Fit to the non-parametric profile



Calculating Phase Space VolumesEvaluating the integral $V \approx \Delta L_z \Delta E \int_{SOS} T(R, v_R) dR dv_R$

Voronoi Tessellation

Enclose each point (site) in SOS inside a polygon Area contains all points which lie closer to site in consideration than another



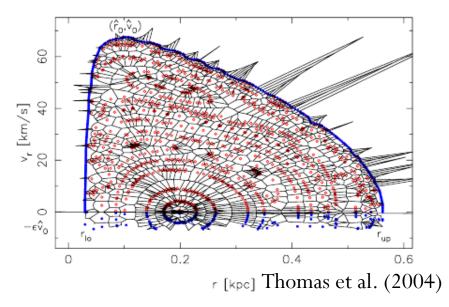


Figure 1. Example of a surface of section for a flattened Hernquist model (details in the text). All orbits have been integrated for $N_{SOS} = 80$ intersections with the SOS.

Figure 2. A Voronoi tessellation of the SOS of Fig. 1. Open circles mark individual intersections of orbits with the SOS; solid dots are points added to make the Voronoi cells well behaved at the boundaries.