Discrete axisymmetric Jeans modeling of Local Group dSphs and M15

Mark den Brok

(Kapteyn Institute)
Glenn van de Ven, Laura Watkins, Remco vd Bosch, Nicolas Martin (MPIA)

Outline

- Why Jeans modeling, why discrete
- Modeling of LG dSphs
- Clipping interlopers
- Splitting populations
- M15
- Conclusions

Motivation

- High-quality kinematic data now available
- Newly developed fast methods for solving the Jeans equations without assumption of spherical symmetry
- LG dSphs are not spherical
- Are there any biases in the mass determinations?
- Can we fit non-parametric models without assumption cusp/core?
- Preparation for discrete Schwarzschild modeling

Axisymmetric jeans modeling (JAM)

- Jeans equations assuming axial symmetry:

$$
\begin{aligned}
& \frac{\nu \overline{v_{R}^{2}}}{R}-v \overline{v_{\phi}^{2}} \\
& R \frac{\partial\left(v \overline{v_{R}^{2}}\right)}{\partial R}+\frac{\partial\left(\nu \overline{v_{R} v_{z}}\right)}{\partial z}=-v \frac{\partial \Phi}{\partial R} \quad v \overline{v_{k} v_{j}} \equiv \int v_{k} v_{j} f \mathrm{~d}^{3} v . \\
& \frac{v \overline{v v_{R} v_{z}}}{R}+\frac{\partial\left(v \overline{v_{z}^{2}}\right)}{\partial z}+\frac{\partial\left(\nu \overline{\left.\nu \overline{R_{R} v_{z}}\right)}\right.}{\partial R}=-v \frac{\partial \Phi}{\partial z},
\end{aligned}
$$

- Assume velocity ellipsoid aligned with the coordinate system and flattening for the velocity ellipsoid:

$$
\beta_{z}(R, z) \equiv 1-\frac{\overline{v_{z}^{2}}}{\overline{v_{R}^{2}}}
$$

Discrete modeling

- Jeans model predicts second moment of the velocity
- Discrete modeling - no loss of spatial and velocity resolution
- Assume absence of all streaming motions
- Approximate likelihood by Gaussian

$$
\mathcal{L}\left(\left\langle v_{\text {los }}^{2}\right\rangle \mid v_{\text {obs }}, \sigma_{v}\right)=\frac{1}{\sqrt{2 \pi\left(\left\langle v_{\text {los }}^{2}+\sigma_{v}^{2}\right\rangle\right)}} \exp \left(-\frac{v_{\text {obs }}^{2}}{2\left(\left\langle v_{\text {los }}^{\text {as }}\right\rangle+\sigma_{v}^{2}\right)}\right)
$$

- As test for using histograms in Schwarzschild modeling

Discrete modeling

MGE expansion based on
King models from
Irwin \& Hatzidimitriou (1995)

Density by varying
MGE components

Discrete modeling

Data from Walker et al., clipped at 99\% membership probability

Discrete modeling

Fornax

Dashed line =

 binned dataSolid line $=$ unbinned data

Dealing with interlopers

Fofngx

- Where to clip?

Dealing with interlopers

- Likelihood: $\mathcal{L}=p\left(\left\{v_{i}\right\}_{i=1}^{N} \mid\left\{b_{i}\right\}_{i=1}^{N}\right.$, dSph model, MW model $)$
$=\prod_{i=1}^{N} p\left(v_{i} \mid \mathrm{dSph} \text { model }\right)^{b_{i}} \cdot p\left(v_{i} \mid \mathrm{MW} \text { model }\right)^{1-b_{i}}$
Prior: $\quad p\left(\left\{b_{i}\right\}_{i=1}^{N} \mid P_{m_{i}}\right)=\prod_{i=1}^{N} P_{m_{i}}^{b_{i}} \cdot\left(1-P_{m_{i}}\right)^{1-b_{i}}$
- Need good model for the Milky Way foreground (selection function)

Dealing with interlopers

$$
p\left(v_{i} \mid \mathrm{MW} \text { model }\right)=\frac{1}{2 v_{\max }}
$$

Fornax
Carina

Chemical tagging

- Battaglia et al. split the metal poor/rich sample with hard cut: can we improve on this by using probabilities
- For Jeans modelling, luminosity profile of the two populations is essential

Chemical tagging

- Hard cut in metallicity did not work for real data of sculptor, neither did metallicity distributions
- Seems to work for mock data

Summary

- Chemical tagging and metallicity distributions seem to work, but require more work

M15

- M15 prototypical core-collapse globular cluster
- M/L profile should vary as function of radius
- Presence of IMBH?

M15: data

- Re-analyze publicly available data:
- Line-of-sight velocity data from Gebhardt et al. (1995), vd Marel (2002)
(1546+64 stars)
- Proper motions from

McNamara (2003) (703 stars mainly in centre)

- Luminosity profile (Noyola
\& Gebhardt, 2006; vd Bosch, 2006)

Van den Bosch+06

Assumptions

- M / L 'non-parametric': leave first 3 gaussians $+6^{\text {th }}+10^{\text {th }}$ gaussian free, interpolate M/L for gaussians in between
- Anisotropy parametrized by Osipkov-Merritt-like profile: may be negative
- Inclination between 40 and 90 degrees
- Black hole mass between 0-4000 solar mass

M15: Inclination

- Slightly lower, though completely consistent with vdB06: 59 ± 12

M15: M/L

- M/L increases toward outer parts: mass segregation

M/L profile of M15

- Steep rise in inner parts: stellar remnants? Or black hole?
- Excellent comparison with previous determinations of M/L profiles

Radial distance

M15: IMBH?

Data (2)	BH mass (3)	β_{z}	Free gaussians	θ	Notes
(4)	(5)	(6)			
vlos	2321 ± 1091	0.	4	60.	
vlos	2411 ± 1066	free	5	60.	
proper	1315 ± 1015	0.	5	60.	
proper	2098 ± 1245	0.	5	60.	Fitted dynamical center
proper+vlos	2034 ± 1080	free	5	free.	

- With this MGE expansion always additional black hole required

M15: IMBH?

Missing mass compensated for by IMBH?

Density profile of M15

Summary

- No evidence for IMBH in M15

What's next?

- Schwarzschild modeling with discrete tracers?
- Different solutions of the Jeans Equation:
- Maybe a more 'physical solution' however, very difficult to calculate
- Still DF maybe non-existent

Conclusions

- Dynamical modelling with discrete kinematic tracers looks promising
- Although significantly higher central density, no evidence for IMBH in M15
- It is possible to use different kinematic populations to constrain the potential: still lot of work to do

